# A calculation of microstates

• I
• Kashmir
In summary: This is just a mathematical statement. It is not relevant to the question.2) "...the number ##\Sigma_{1}\left(\varepsilon^{*}\right)## on the other hand, exhibits a much smoother asymptotic behavior."What do you mean by "smoother asymptotic behavior"?
Kashmir
*Pathria, Statistical mechanics pg 11,4ed*

The text is long but it is straightforward. The question is at last about the equation given at end

In order to find the number of microstates ##\Omega(N,V,E##) author writes

" In other words, we have to determine the total number of (independent) ways of satisfying the equation
##
\sum_{r=1}^{3 N} \varepsilon_{r}=E,
"##
Where ##E## is the total energy of system and
##\varepsilon_{r}## is the energy of ##r##th degree of freedom.

" Now, the energy eigenvalues for a free, nonrelativistic particle confined to a cubical box of side ##L\left(V=L^{3}\right)##, under the condition that the wave function ##\psi(\boldsymbol{r})## vanishes everywhere on the boundary, are given by
##
\varepsilon\left(n_{x}, n_{y}, n_{z}\right)=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) ; \quad n_{x}, n_{y}, n_{z}=1,2,3, \ldots,
##
where ##h## is Planck's constant and ##m## the mass of the particle. The number of distinct eigenfunctions (or microstates) for a particle of energy ##\varepsilon## would, therefore, be equal to the number of independent, positive-integral solutions of the equation
##
\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)=\frac{8 m V^{2 / 3} \varepsilon}{h^{2}}=\varepsilon^{*} .
##
We may denote this number by ##\Omega(1, \varepsilon, V)##. Extending the argument, it follows that the desired number ##\Omega(N, E, V)## would be equal to the number of independent, positiveintegral solutions of the equation
##
\sum_{r=1}^{3 N} n_{r}^{2}=\frac{8 m V^{2 / 3} E}{h^{2}}=E^{*}
##"
"... the number ##\Omega(N, V, E)##, or better ##\Omega_{N}\left(E^{*}\right)## is equal to the number of positiveintegral lattice points lying on the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*} ## . The number ##\Sigma_{N}\left(E^{*}\right)##, which denotes the number of positive-integral lattice points lying on or within the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*}##. In terms of our physical problem, this would correspond to the number, ##\Sigma(N, V, E)##, of microstates of the given system consistent with all macrostates characterized by the specified values of the parameters ##N## and ##V## but having energy less than or equal to ##E####\Sigma(N, V, E)=\sum_{E^{\prime} \leq E} \Omega\left(N, V, E^{\prime}\right)
##
or
##
\Sigma_{N}\left(E^{*}\right)=\sum_{E^{*} \leq E^{*}} \Omega_{N}\left(E^{{*\prime}}\right)##

"...let us examine the behavior of the numbers ##\Omega_{1}\left(\varepsilon^{*}\right)## and ##\Sigma_{1}\left(\varepsilon^{*}\right)## which correspond to the case of a single particle confined to the given volume ##V##. The number ##\Sigma_{1}\left(\varepsilon^{*}\right)## on the other hand, exhibits a much smoother asymptotic behavior. **From the geometry of the problem, we note that, asymptotically, ##\Sigma_{1}\left(\varepsilon^{*}\right)## should be equal to the volume of an octant of a three-dimensional sphere of radius** ##\sqrt{\varepsilon}^{*}##, **that is**,
##
\lim _{\varepsilon^{*} \rightarrow \infty} \frac{\Sigma_{1\left(\varepsilon^{*}\right)}}{(\pi / 6) \varepsilon^{* 3 / 2}}=1.
##

* Why is the above equation true?

Hi,

If I understand your question, you agree with the bold-faced statement and ask about the equation ?

Well, the volume of a sphere is ##{4\over 3} \pi r^3##, so an octant has a volume 1/8 of that.

##\ ##

BvU said:
Hi,

If I understand your question, you agree with the bold-faced statement and ask about the equation ?

Well, the volume of a sphere is ##{4\over 3} \pi r^3##, so an octant has a volume 1/8 of that.

##\ ##
hi, no I don't understand the statement.

You have to imagine what it looks like in n-space: consider each state as a point ##(n_x, n_y, n_z)## in three-dimensional space, with corresponding energy ##\varepsilon(n_x, n_y, n_z)##.

Asymptotically, these states become so close to one another than one can consider ##n_x##, ##n_y##, and ##n_z## as continuous instead of discrete. In that case, all states with the same energy are characterized by a vector ##\vec{n} = (n_x, n_y, n_z)## of the same length. That vector can point anywhere in the octant where ##n_x##, ##n_y##, and ##n_z## are all positive. The tip of that vector describes (1/8th of) a spherical shell, and the total number of states is the volume of (1/8th of) the corresponding sphere.

(Picture "borrowed" form http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/phodens.html)

vanhees71, Kashmir and BvU
DrClaude said:
You have to imagine what it looks like in n-space: consider each state as a point ##(n_x, n_y, n_z)## in three-dimensional space, with corresponding energy ##\varepsilon(n_x, n_y, n_z)##.

Asymptotically, these states become so close to one another than one can consider ##n_x##, ##n_y##, and ##n_z## as continuous instead of discrete. In that case, all states with the same energy are characterized by a vector ##\vec{n} = (n_x, n_y, n_z)## of the same length. That vector can point anywhere in the octant where ##n_x##, ##n_y##, and ##n_z## are all positive. The tip of that vector describes (1/8th of) a spherical shell, and the total number of states is the volume of (1/8th of) the corresponding sphere.
View attachment 299200
(Picture "borrowed" form http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/phodens.html)
This cleared it a lot. Thank you.
I have a doubts regarding what you said:

1) Why do "...Asymptotically these states become so close to one another...? How do we know that they become so close?

Kashmir said:
1) Why do "...Asymptotically these states become so close to one another...? How do we know that they become so close?
I was using the same wording as in your book, but this will depend on exactly how you are taking the thermodynamic limit. For instance, taking ##V \rightarrow \infty##, you have ##L \rightarrow \infty## in the equation for energy and the energy levels become continuous. Also, for ##\vec{n}## big enough, the discreteness of ##n_x##, ##n_y##, and ##n_z## becomes negligible.

DrClaude said:
The tip of that vector describes (1/8th of) a spherical shell, and the total number of states is the volume of (1/8th of) the corresp
Why should the total number of states be equal to the volume of an octant?

Once we assume that the number of states is continuous it follows that they are infinite in number.

Last edited:
Kashmir said:
Why should the total number of states be equal to the volume of an octant?
It is a matter of counting grid points in ##n## space. Each grid point ##(n_x, n_y, n_z)\ ## corresponds to a microstate.

The number of those grid points satisfying the energy constraint corresponds to a volume in that ##n## space.

##\ ##

## 1. What is a calculation of microstates?

A calculation of microstates is a scientific method used to determine the number of possible arrangements or configurations of particles in a given system. It is based on the principles of statistical mechanics and helps to understand the behavior of systems at the microscopic level.

## 2. Why is a calculation of microstates important?

A calculation of microstates is important because it provides valuable information about the thermodynamic properties of a system. It helps to predict the macroscopic behavior of a system by analyzing the microscopic arrangements of its particles.

## 3. What factors affect the number of microstates in a system?

The number of microstates in a system is affected by the number of particles, the energy of the system, and the available volume. Other factors such as external pressure and temperature can also influence the number of microstates in a system.

## 4. How is a calculation of microstates performed?

A calculation of microstates involves using mathematical equations and statistical methods to determine the number of possible arrangements of particles in a system. This can be done by considering the number of particles, the energy of the system, and the available volume.

## 5. What are the applications of a calculation of microstates?

A calculation of microstates has various applications in fields such as thermodynamics, statistical mechanics, and molecular dynamics. It is used to understand the behavior of gases, liquids, and solids, and to predict the properties of complex systems.

• Thermodynamics
Replies
7
Views
835
• Thermodynamics
Replies
3
Views
996
• Thermodynamics
Replies
2
Views
910
• Thermodynamics
Replies
7
Views
1K
• Thermodynamics
Replies
5
Views
2K
Replies
7
Views
2K
Replies
1
Views
1K
• Quantum Physics
Replies
4
Views
1K
• Topology and Analysis
Replies
2
Views
360
• Thermodynamics
Replies
1
Views
864