A complex line integral

  • Thread starter DottZakapa
  • Start date
  • #1
210
13

Homework Statement:

if ## \gamma (t):= i+3e^{2it } , t \in \left[0,4\pi \right] , then \int_0^{4\pi } \frac {dz} {z} \ ##

Relevant Equations:

complex numbers
if ## \gamma (t):= i+3e^{2it } , t \in \left[0,4\pi \right] , then \int_0^{4\pi} \frac {dz} {z} ##

in order to solve such integral i substitute z with ##\gamma(t)## and i multiply by ##\gamma'(t)##
that is:
##\int_0^{4 \pi} \frac {6e^{2it}}{i+3e^{2it}}dt=\left.log(i+3e^{2it}) \right|_0^{4 \pi}=##

##= log\left (i+3e^{i8 \pi }\right) - log\left (i+3\right)=##

##= log\left (i+3\right)-log\left (i+3\right)##

there must be something wrong but i don't see where i'm making the mistake. Because in such way the result will be zero but shouldn't be so.
 
Last edited:
  • Like
Likes Delta2

Answers and Replies

  • #2
anuttarasammyak
Gold Member
333
158
I do not see relation between z in the integral and defined ##\gamma##. z=##\gamma##? Why (4##\pi##) in parenthesis ? Why the result should not be zero ?
 
Last edited:
  • #3
13,457
10,517
Homework Statement:: if γ(t):=i+3e(2it),t∈[0,4π],then∫0(4π)dzz
Relevant Equations:: complex numbers

if γ(t):=i+3e(2it),t∈[0,4π],then∫0(4π)dzz

in order to solve such integral i substitute z with γ(t) and i multiply by γ′(t)
that is:
∫0(4π)6ie(2it)i+3e(2it)dt=log(i+3e(2it))|04π=

=log(i+3e(i8π))−log(i+3)=
=log(i+3)−log(i+3)
there must be something wrong but i don't see where i'm making the mistake. Because in such way the result will be zero but shouldn't be so.
I think you should either first eliminate the complex denominator or otherwise integrate properly with ##\log| i +3e^{2it}|## and calculate the absolute value first and then insert the limits.
 
  • Like
Likes DaveE
  • #4
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
14,358
6,729
Homework Statement:: if ## \gamma (t):= i+3e^\left(2it \right) , t \in \left[0,4\pi \right] , then \int_0^\left(4\pi \right) \frac {dz} {z} \ ##
Relevant Equations:: complex numbers

if ## \gamma (t):= i+3e^\left(2it \right) , t \in \left[0,4\pi \right] , then \int_0^\left(4\pi \right) \frac {dz} {z} \ ##

in order to solve such integral i substitute z with ##\gamma(t)## and i multiply by ##\gamma'(t)##
that is:
##\int_0^\left(4\pi \right) \frac {6ie^\left(2it\right)} { i+3e^\left(2it \right)} dt =\left. log(i+3e^\left(2it\right)) \right|_0^{4 \pi }=##

##= log\left (i+3e^\left(i8 \pi \right)\right) - log\left (i+3\right)=##
##= log\left (i+3\right)-log\left (i+3\right)##
there must be something wrong but i don't see where i'm making the mistake. Because in such way the result will be zero but shouldn't be so.
What about using the Residue Theorem?
 
  • Like
Likes FactChecker
  • #5
210
13
I do not see relation between z in the integral and defined ##\gamma##. z=##\gamma##? Why (4##\pi##) in parenthesis ? Why the result should not be zero ?
i am not understanding your reply...
Why (4##\pi##) in parenthesis ?
because i made a typo which i have now corrected.

I do not see relation between z in the integral and defined ##\gamma##. z=##\gamma##?
according to the theorem of complex line Integral :
##\int_{\gamma}f(z)dz= \int_a^b f(\gamma(t))\gamma'(t)dt ##

Why the result should not be zero ?
because the result given end on wolfram is not zero but ##8\pi i##
 
  • #6
210
13
What about using the Residue Theorem?
i did not study it yet, was trying to solve it with the line integral theorem
 
  • #7
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
14,358
6,729
i did not study it yet, was trying to solve it with the line integral theorem
The least you could do is recognise you are going round the same circle four times. So, integrate from ##0## to ##\pi## and then multiply by four.

It easier once you know the residue theorem. Which gives ##8\pi i##.
 
  • #8
210
13
The least you could do is recognise you are going round the same circle four times. So, integrate from ##0## to ##\pi## and then multiply by four.

It easier once you know the residue theorem. Which gives ##8\pi i##.
ok i will have a look to residue theorem, but just to understand, have I applied the line integral correctly?
 
  • #9
13,457
10,517
ok i will have a look to residue theorem, but just to understand, have I applied the line integral correctly?
Have you read my reply? I doubt that ##\left[\log(f(t))\right]_a^b## equals ## \left[\log|f(t)|\right]_a^b##.
 
  • Like
Likes Delta2
  • #10
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,742
1,343
Consider this.
$$\log e^{2\pi i} = 2\pi i$$ because ##\log## and ##e^z## are inverse functions, and
$$\log e^{2\pi i} = \log 1 = 0$$ because ##e^{2\pi i} = 1##. Which one is correct?
 
  • Like
Likes benorin, DaveE, Delta2 and 1 other person
  • #11
210
13
Have you read my reply? I doubt that ##\left[\log(f(t))\right]_a^b## equals ## \left[\log|f(t)|\right]_a^b##.
it is not the same, but according to the boundaries of integrations the argument is always positive, no?
 
  • #12
13,457
10,517
it is not the same, but according to the boundaries of integrations the argument is always positive, no?
What do you mean by positive if you didn't get rid of the complex numbers? As I see it you have three possibilities:
  1. Integrate ##\dfrac{6e^{2it}}{ i + 3e^{2it}}=\dfrac{(6 e^{2it}) \cdot ( -i + 3e^{2it})}{1+9e^{4it}}##.
  2. Apply the correct formula for ##\displaystyle{\int \dfrac{f'(t)}{f(t)}}\,dt = \log\,|f(t)|\,## with the absolute value in the logarithm before inserting the limits.
  3. Residue theorem.
 
  • #13
210
13
Sorry but(not considering the boundaries of integration) isn't this like this?
##\int \frac {6ie^{2it}}{i+3e^{2it}}dt=log|i+3e^{2it}|= log|i+3(cos(2t)+i sin(2t))| ##
 
  • #14
13,457
10,517
I haven't done the math, but this looks ok. You only have to compute the (real valued) length at some stage. All three ways should of course result in the same number.
 
  • #15
210
13
I haven't done the math, but this looks ok. You only have to compute the (real valued) length at some stage. All three ways should of course result in the same number.
ok, so if the above is true, then also this holds. Correct?
##\int_0^{4\pi} \frac {6ie^{2it}}{i+3e^{2it}}dt=\left.log|i+3e^{2it}|\right|_0^{4\pi}=\left. log|i+3(cos(2t)+i sin(2t))|\right|_0^{4\pi} ##
 
  • #16
13,457
10,517
ok, so if the above is true, then also this holds. Correct?
##\int_0^{4\pi} \frac {6ie^{2it}}{i+3e^{2it}}dt=\left.log|i+3e^{2it}|\right|_0^{4\pi}=\left. log|i+3(cos(2t)+i sin(2t))|\right|_0^{4\pi} ##
I think so. But why don't you calculate the absolute value? This has to be done prior to the evaluation at the end points.
 
  • #17
210
13
because i don't understand what should i do with that absolute value.
 
  • Like
Likes Delta2
  • #18
13,457
10,517
It is the norm of a complex number: ##|z|=\sqrt{|z|\cdot|\bar{z}|}=\sqrt{\Re(z)^2+\Im(z)^2}##, and the integral of ##\dfrac{y'}{y}## is ##\log|y|##. Hence you cannot avoid the norm.

You can also proceed by possibility #1 where you only have ##c\cdot e^{nit}## terms to integrate.

I would solve the integral in all three ways for practicing, starting from #1 to #3. You can e.g. look up the residue theorem on Wikipedia.
 
  • Like
Likes DaveE
  • #19
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,742
1,343
Apply the correct formula for ##\displaystyle{\int \dfrac{f'(t)}{f(t)}}\,dt = \log\,|f(t)|\,## with the absolute value in the logarithm before inserting the limits.
I don't think this is correct for complex integration. It'll just lead to the same result that confused the OP in the first place.
 
  • #20
13,457
10,517
I don't think this is correct for complex integration. It'll just lead to the same result that confused the OP in the first place.
Yeah, maybe. I haven't checked. But the idea of complex path integrals is a real parameterization, so that possible complex numbers become constants and the integral a real one.
 
  • #21
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,742
1,343
ok i will have a look to residue theorem, but just to understand, have I applied the line integral correctly?
Kind of, but not really. How's that for confusing?

You used the idea that ##\int (dz/z) = \log z##, but you have to be careful. You're assuming ##\log z## is an antiderivative of ##1/z##, but under what conditions can you say this? There are ways to work around this difficulty. My question above, which you seem to have completely ignored, was intended to get you to consider what you're doing more carefully.
 
  • Like
Likes fresh_42
  • #22
210
13
Kind of, but not really. How's that for confusing?

You used the idea that ##\int (dz/z) = \log z##, but you have to be careful. You're assuming ##\log z## is an antiderivative of ##1/z##, but under what conditions can you say this? There are ways to work around this difficulty. My question above, which you seem to have completely ignored, was intended to get you to consider what you're doing more carefully.
i did not ignore it, was just trying to see the connection with the exercise and your statement
 
  • #23
210
13
Consider this.
$$\log e^{2\pi i} = 2\pi i$$ because ##\log## and ##e^z## are inverse functions, and
$$\log e^{2\pi i} = \log 1 = 0$$ because ##e^{2\pi i} = 1##. Which one is correct?
both are correct
 
  • #24
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,742
1,343
So we must conclude that ##2\pi i = 0##?

By the way, how do you know the original integral shouldn't evaluate to 0?
 

Related Threads on A complex line integral

Replies
2
Views
1K
  • Last Post
Replies
0
Views
1K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
3
Views
6K
Replies
1
Views
1K
Replies
1
Views
844
Replies
1
Views
929
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
0
Views
2K
Top