- #1

- 56

- 0

## Homework Statement

show that [tex]\displaystyle \lim_{n \to \infty} \left[ \left(\begin{matrix} n \\ 0 \end{matrix} \right) \left(\begin{matrix} n \\ 1\end {matrix} \right) ....\left(\begin{matrix} n \\ n \end{matrix} \right ) \right]^\frac{1}{n^2} = e^\frac{1}{2}[/tex]

## Homework Equations

Stirling's approximation [tex]n! \sim \sqrt{2 \pi n} n^n e^{-n}[/tex]

## The Attempt at a Solution

Firstly I tried to use smallest term to the n-power because that is # of terms of these combinations. Then, [tex] \displaystyle \lim_{n \to \infty} ((n^n))^\frac{1}{n^2} =1 [/tex]. Secondly I did the same with de largest term, taking into account that middle term of Pascal's triangle [tex]\displaystyle \sim \frac{n!}{(\frac{n}{2}!)(\frac{n}{2}!)}[/tex] which gave me 2, so now I know that the limit is between 2 and 1 but I haven't proved that the limit is [tex]e^\frac{1}{2}[/tex]. I also tried logs and play with these combinations from right to left and in reverse but it did not help much. If anybody knows any generating function or idea that I can apply, it will be greatly appreciated.

Thanks