1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A first order ODE

  1. Sep 22, 2005 #1
    I need to solve the following for f(s):

    (s^2 + 1)f '(s) + s f(s) = 0

    First I isolated for f '(s), which gave me:

    f '(s) = -s f(s)/(s^2 + 1)


    d f(s)/ds = -s f(s)/(s^2 + 1)

    so, d f(s) = (-s f(s)/(s^2 + 1))ds

    Integrating I get:

    f(s) = -F(s)ln(s^2 + 1)/2 + C, where F(s) is the antiderivative of f(s) and C is a constant of integration.

    Did I do any of that correctly??!!??
  2. jcsd
  3. Sep 22, 2005 #2


    User Avatar
    Science Advisor
    Homework Helper

    Not the last part. Just write it this way:


    That's in standard form right? Now calculate the integrating factor [itex]\sigma [/itex], multiply both sides by it, end up with an exact differential on the LHS, integrate, don't forget the constant of integration, that should do it. This is the integrating factor:

    [tex]\sigma=\text{Exp}\left[\int \frac{s}{(s^2+1)}\right][/tex]

    Can you do the rest?
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: A first order ODE
  1. First order ODE (Replies: 10)

  2. Second Order ODE (Replies: 4)