- #1
Char. Limit
Gold Member
- 1,216
- 22
Homework Statement
Find the Jacobian of the transformation:
[tex]x=\frac{u}{u+v}, y=\frac{v}{u-v}[/tex]
Homework Equations
Jacobian = [tex]\left|\stackrel{\frac{\partial x}{\partial u}}{\frac{\partial x}{\partial v}} \stackrel{\frac{\partial y}{\partial u}}{\frac{\partial y}{\partial v}}\right| =\left(\frac{\partial x}{\partial u}\right) \left(\frac{\partial y}{\partial v}\right) - \left(\frac{\partial x}{\partial v}\right) \left(\frac{\partial y}{\partial u}\right)[/tex]
The Attempt at a Solution
Now, I got for my four partial derivatives...
[tex]\frac{\partial x}{\partial u} = \frac{v}{\left(u+v\right)^2}[/tex]
[tex]\frac{\partial x}{\partial v} = - \frac{u}{\left(u+v\right)^2}[/tex]
[tex]\frac{\partial y}{\partial u} = - \frac{v}{\left(u-v\right)^2}[/tex]
[tex]\frac{\partial y}{\partial v} = \frac{u}{\left(u-v\right)^2}[/tex]
So, multiplying these together gave me...
[tex]Jacobian = \frac{vu}{(u+v)^2 (u-v)^2} - \frac{uv}{(u+v)^2 - (u-v)^2} = 0[/tex]
Am I supposed to get a Jacobian of 0?
Last edited: