- 1,152

- 12

**1. The problem statement, all variables and given/known data**

Find the Jacobian of the transformation:

[tex]x=\frac{u}{u+v}, y=\frac{v}{u-v}[/tex]

**2. Relevant equations**

Jacobian = [tex]\left|\stackrel{\frac{\partial x}{\partial u}}{\frac{\partial x}{\partial v}} \stackrel{\frac{\partial y}{\partial u}}{\frac{\partial y}{\partial v}}\right| =\left(\frac{\partial x}{\partial u}\right) \left(\frac{\partial y}{\partial v}\right) - \left(\frac{\partial x}{\partial v}\right) \left(\frac{\partial y}{\partial u}\right)[/tex]

**3. The attempt at a solution**

Now, I got for my four partial derivatives...

[tex]\frac{\partial x}{\partial u} = \frac{v}{\left(u+v\right)^2}[/tex]

[tex]\frac{\partial x}{\partial v} = - \frac{u}{\left(u+v\right)^2}[/tex]

[tex]\frac{\partial y}{\partial u} = - \frac{v}{\left(u-v\right)^2}[/tex]

[tex]\frac{\partial y}{\partial v} = \frac{u}{\left(u-v\right)^2}[/tex]

So, multiplying these together gave me...

[tex]Jacobian = \frac{vu}{(u+v)^2 (u-v)^2} - \frac{uv}{(u+v)^2 - (u-v)^2} = 0[/tex]

Am I supposed to get a Jacobian of 0?

Last edited: