If we have(adsbygoogle = window.adsbygoogle || []).push({});

[tex]P(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2} x^2},[/tex]

then

[tex]I=\int^{+\infty}_{-\infty}dx \, P(x) \theta(x)

= \int^{+\infty}_0 dx \, P(x)=\frac{1}{2},[/tex]

where [tex]\theta[/tex] is the step function. Now, using its integral representation, we have

[tex]

I=\int^{+\infty}_{-\infty}dx \, P(x) \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \, e^{ikx} = \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \int^{+\infty}_{-\infty}dx \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2+ikx}= \frac{1}{2\pi i}\int^{+\infty}_{-\infty} \frac{dk}{k} e^{-\frac{1}{2} k^2} .

[/tex]

But the integral over [tex]k[/tex] is calculated using residues and gives [tex]2\pi i[/tex] times the residue at [tex]k=0[/tex], what gives simply [tex]2\pi i[/tex] for the integral over [tex]k[/tex] and the wrong result 1 for the integral [tex]I[/tex]. I cannot see the catching. What is wrong with this calculation?

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Little Problem with a Simple Integral

Loading...

Similar Threads - Little Problem Simple | Date |
---|---|

I Need a little push on this integral using trig substitution. | Mar 15, 2017 |

A little confused about integrals | Jan 8, 2015 |

Self studying little Spivak's, stuck on problem 1-6 | Jun 22, 2011 |

Little help? simple problem | Dec 20, 2007 |

A little calculus problem | May 11, 2004 |

**Physics Forums - The Fusion of Science and Community**