1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A Mechanics Problem

  1. Sep 9, 2008 #1
    1. The problem statement, all variables and given/known data

    A rigid circular ring (M) of radius R is hanged from a string. Two equal mass beads (m) are released from rest simultaneously from the top of the ring and begin to slide down opposite sides.

    Show that if the mass of the bead exceeds 1.5 times of the ring, the ring will jump up when the beads fall to a certain position. Ignore friction.

    2. Relevant equations



    3. The attempt at a solution

    when upward force acted on the ring exceeds its gravitational force, it experiences upward accceleration, denote that angular position as θ, measuring from the top.
    Denote N as the reaction force exerted by the ring to the beads, by 3rd law, an opposite N is exerted on the ring (upward).
    So 2N cosθ > Mg, as tension in string is 0 at the moment

    energy conservation: 0.5mv^2 = mgR(1-cosθ)
    Centripetal acceleration: N+mg cosθ = mv^2/R

    N = 2mg(1-cosθ)-mg cosθ = mg(2-3cosθ)

    Mg/2cosθ < mg(2-3cosθ)
    so I get m/M = 1/(2cosθ)(2-3cosθ)

    It seems that I still miss one equation. Where is it? Thanks in advance.
     
  2. jcsd
  3. Sep 9, 2008 #2
    Solved.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: A Mechanics Problem
  1. Mechanics Problem (Replies: 2)

  2. Mechanics Problem (Replies: 2)

  3. Mechanics problem (Replies: 0)

Loading...