I have this matrix problem:(adsbygoogle = window.adsbygoogle || []).push({});

Given [itex]R_1, R_2, R_3\in\mathbb{R}^{N\times N}[/itex] are symmetric matrices with rank [itex]p<N[/itex]. Their SVD are [itex]U_1\Sigma_1 U_1^T[/itex], [itex]U_2\Sigma_2 U_2^T[/itex] and [itex]U_3\Sigma_3 U_3^T[/itex], respectively. I want to find a rank [itex]p[/itex] matrix [itex]V[/itex] such that

[tex]J = \|V\Sigma_1 V^T - U_1\Sigma_1 U_1^T\|_F^2 + \|V\Sigma_2 V^T - U_2\Sigma_2 U_2^T\|_F^2 + \|V\Sigma_3 V^T - U_3\Sigma_3 U_3^T\|_F^2[/tex]

is minimized, subject to the constraint [itex]V^T V = I[/itex].

I tried using the trace for the Frobenius norm and ended up with

[tex]2V (\Sigma_1^2 + \Sigma_2^2 + \Sigma_3^2) - 4(U_1\Sigma_1 U_1^T V \Sigma_1 + U_2\Sigma_2 U_2^T V \Sigma_2 + U_3\Sigma_3 U_3^T V \Sigma_3) + V(\Lambda + \Lambda^T) = 0[/tex]

where [itex]\Lambda[/itex] contains the Lagrange multipliers. I have no idea how to continue from here. Any help would be appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A minimization problem

**Physics Forums | Science Articles, Homework Help, Discussion**