• Support PF! Buy your school textbooks, materials and every day products via PF Here!

A partial derivative problem?

  • Thread starter Derill03
  • Start date
Find par(z)/par(t) at s=1, t=0
when z= ln(x+y), x=s+t, y=s-t

Not sure how to approach cause if i plug in s's and t's i get an answer of 0 because taking the partial with respect to t yields a zero. Can someone shed some light on how to correctly solve?

par(z)/par(t) = partial derivative of z with respect to t
 

djeitnstine

Gold Member
614
0
find [tex]\frac{\partial{z}}{\partial{x}} \frac{\partial{x}}{\partial{t}}}[/tex] and [tex]\frac{\partial{z}}{\partial{y}} \frac{\partial{y}}{\partial{t}}[/tex]
 

HallsofIvy

Science Advisor
Homework Helper
41,683
865
The chain rule for partial derivatives is
[tex]\frac{\partial z}{\partial t}= \frac{\partial z}{\partial x}\frac{\partial x}{\partial t}+ \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}[/tex]
 
I just don't know how to deal with it in the form its in. The s and t are what are confusing me, can u give me some sort of an example?

The way i did it is substitute s and t for y and x so i get ln(2s) but when u take partial with respect to t you get 0? is this correct?
 

Related Threads for: A partial derivative problem?

  • Posted
Replies
3
Views
2K
  • Posted
Replies
5
Views
1K
  • Posted
Replies
2
Views
1K
  • Posted
Replies
2
Views
477
  • Posted
Replies
10
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top