Suppose we have a particle in a 1-dimensional box, such that the particle is in its lowest energy state. The energy of a particle in a 1-dimensional box is E = h^2*n^2/(8*m*L^2). Therefore, if the particle is in its lowest energy level, n = 1, and the box has a length of d, then E = h^2/(8*m*d^2). Now suppose we divide the box into two boxes, A and B, using an impenetratable barrier so that each new box has a length of d/2. Now, if the particle is found to be in box A, the minimum energy it can have is n = 1, where E = h^2*n^2/(8*m*L^2) and therefore, E= h^2/(8*m*(d/2)^2) = 4*h^2/(8*m*d^2). This is the same for the particle being found in box B by symmetry. How is it possible that the energy has increased by simply adding a dividing barrier.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A particle in two boxes

**Physics Forums | Science Articles, Homework Help, Discussion**