Let's imagine two sets A = {1,2,...,k} and B = {-1,-2,...,-k} for some natural k, then let's create n two-element sets X_1,X_2,...,X_n such that for each 0<i=<n X_i = {a,b} where a is from A and b is from B but |a|<>|b|. We know how do sets X_i look like and according to this we will choose the set C = {c_1,c_2,...,c_k} where |c_i|=i such that the number (denoted MAX) of sets X_1,X_2,...,X_n that have at least one common element with C is maximal. Determine the maximal constant 0<=c<=1 such that MAX>=[cn] for arbitrary n,k and sets X_1,X_2,...,X_n.(adsbygoogle = window.adsbygoogle || []).push({});

NOTE: [x] denotes the integral part of number x

Example:

k = 2, A = {1,2}, B = {-1,-2}

n = 4, X_1 = {-1,-2}, X_2 = {-1,2}, X_3 = {1,-2}, X_4 = {1,2}

we can choose C = {1,2} (in this case we have more possibilities) the number X_i that have at least one common element with C is 3, X_1 and C have no common element.

From this example we can easily see, that c<=3/4, I think that c=3/4 is sufficient condition, but I can't prove it.

Could anybody help me with it? Thanks.

**Physics Forums - The Fusion of Science and Community**

# A problem with sets

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

- Similar discussions for: A problem with sets

Loading...

**Physics Forums - The Fusion of Science and Community**