- #1

MathematicalPhysicist

Gold Member

- 4,699

- 369

if im not mistaken the creation of big bang is a thing of disorder isnt it?

You should upgrade or use an alternative browser.

- Thread starter MathematicalPhysicist
- Start date

- #1

MathematicalPhysicist

Gold Member

- 4,699

- 369

if im not mistaken the creation of big bang is a thing of disorder isnt it?

- #2

Are you speaking of the evolution of life or matter???

Nautica

Nautica

- #3

russ_watters

Mentor

- 21,857

- 8,823

Now, your question itself is a fairly incoherent run-on sentence, so I'm not exactly sure what you are getting at. But since time and the universe start at the big bang (or rather, at a point in time just after the big bang), there is no "before" with which to measure a change in entropy before and after the big bang.

Overall, I guess you are asking if the big bang theory contradicts the second law of thermodynamics. No, it doesn't.

- #4

Ambitwistor

- 841

- 1

- #5

MathematicalPhysicist

Gold Member

- 4,699

- 369

to me it's contradictory because in the beginning there wasnt structure to the universe and now there is and as i understood it entropy is another word for disorder now how can it be that in the big bang there was more order than now?

- #6

jcsd

Science Advisor

Gold Member

- 2,101

- 12

S - S

Where W is the number of microscopically distinct states that give rise to the same macroscopic state of the system (in terms of quantum mechanics this would be the number of solutions to the Schroedinger wave equation giving the same energy distribution), k is the Boltzmann constant, S

The third law of thermodynamics state that a perfect crystal at absolute zero has an entropy of zero using this fact and (1) you can then show that any non-perfect molecular configuration has a certain amount of what is known as configurational entropy that is intrinstic to it and this is what can be thought of as disorder. The early stages of the universe by this defintion would be very ordered, infact incredibly so, IIRC the probabilty of the current universe sponateously revrting back to this amount of order would be 10

- #7

Ambitwistor

- 841

- 1

Originally posted by loop quantum gravity

to me it's contradictory because in the beginning there wasnt structure to the universe and now there is and as i understood it entropy is another word for disorder now how can it be that in the big bang there was more order than now?

As jcsd, "order" is a vague term. What one intuitively thinks of as "order" doesn't necessarily correspond to "low entropy".

For instance, take a cloud of gas, which gravitationally collapses to form a solar system, with a star, planets, etc. Would you say that the universe is more "ordered" after the formation of the solar system, than it was before? Maybe ... but does it have less entropy? No: it has more entropy. See:

http://groups.google.com/groups?selm=9thcur$6jd$2@woodrow.ucdavis.edu

http://groups.google.com/groups?selm=906b1c$81u$2@mark.ucdavis.edu

http://groups.google.com/groups?selm=aip9kj$bhk$2@woodrow.ucdavis.edu

(These articles are very similar to each other, but they have slightly different references and details, so I cited all three.)

- #8

MathematicalPhysicist

Gold Member

- 4,699

- 369

that's what puzzled me too.Originally posted by Ambitwistor

As jcsd, "order" is a vague term. What one intuitively thinks of as "order" doesn't necessarily correspond to "low entropy".

For instance, take a cloud of gas, which gravitationally collapses to form a solar system, with a star, planets, etc. Would you say that the universe is more "ordered" after the formation of the solar system, than it was before? Maybe ... but does it have less entropy? No: it has more entropy. See:

http://groups.google.com/groups?selm=9thcur$6jd$2@woodrow.ucdavis.edu

http://groups.google.com/groups?selm=906b1c$81u$2@mark.ucdavis.edu

http://groups.google.com/groups?selm=aip9kj$bhk$2@woodrow.ucdavis.edu

(These articles are very similar to each other, but they have slightly different references and details, so I cited all three.)

the universe has structure and although it is ordered it's entropy is high.

what is the term of "order" in physics? (i thought it was low entropy).

- #9

Ambitwistor

- 841

- 1

Originally posted by loop quantum gravity

the universe has structure and although it is ordered it's entropy is high.

what is the term of "order" in physics? (i thought it was low entropy).

As far as I know, there is no mathematical definition of "order" that corresponds in all cases to our intuition.

- #10

jcsd

Science Advisor

Gold Member

- 2,101

- 12

- #11

MathematicalPhysicist

Gold Member

- 4,699

- 369

also now the universe is homogenous.Originally posted by jcsd

Ambitwistorposted, as they explain how in large systems where gravity pre-dominates, as entropy increases so does inhomogenity. The early universe was incredibly homogenous.

if it wasnt then how could you say that the laws of physics apply everywhere in the universe?

- #12

MathematicalPhysicist

Gold Member

- 4,699

- 369

i think it's more a philosophical question then a mathematical one.Originally posted by Ambitwistor

As far as I know, there is no mathematical definition of "order" that corresponds in all cases to our intuition.

- #13

jcsd

Science Advisor

Gold Member

- 2,101

- 12

Originally posted by loop quantum gravity

also now the universe is homogenous.

if it wasnt then how could you say that the laws of physics apply everywhere in the universe?

You are right the universe still is pretty homogenpus, but nowhere near as homogenous (and by homogenopus I mean homogenous in the distribution of it's matter) as it was in it's early stages.

- #14

MathematicalPhysicist

Gold Member

- 4,699

- 369

becuase the space where the universe just begun was.... how should i put it, "small" and now as it's evolving so has matter evolved with space.Originally posted by jcsd

You are right the universe still is pretty homogenpus, but nowhere near as homogenous (and by homogenopus I mean homogenous in the distribution of it's matter) as it was in it's early stages.

- #15

jcsd

Science Advisor

Gold Member

- 2,101

- 12

And what has this evolution amounted to in terms of entropy? An increase.

- #16

Bystander

Science Advisor

Homework Helper

Gold Member

- 5,390

- 1,470

Originally posted by loop quantum gravity

i think it's more a philosophical question then a mathematical one.

Which brings us to the 4th law --- "It is impossible to do any useful thermodynamic work with a thesaurus." Entropy is a thermodynamic state function defined in the first half of the 19th century. This is prior to the statistical mechanical arguments. Statistical mechanics gives us partition functions for systems; if you must use the stat. mech. approach to analyzing questions involving entropy, WRITE THE PARTITION FUNCTION FOR THE SYSTEM! Don't appeal to the lame, intuitive (and incorrect) analogy that entropy is equivalent to a measure of disorder. And, NEVER take that lame analogy and run with it to the thesaurus --- order=structure=sequence=a thousand other untenable arguments (running with analogies is every bit as dangerous as running with scissors --- you WILL cut yourself).

Share:

- Replies
- 22

- Views
- 440

- Replies
- 5

- Views
- 736

- Replies
- 1

- Views
- 112

- Replies
- 1

- Views
- 356

- Last Post

- Replies
- 18

- Views
- 495

- Last Post

- Replies
- 3

- Views
- 209

- Last Post

- Replies
- 10

- Views
- 431

- Last Post

- Replies
- 2

- Views
- 242

- Last Post

- Replies
- 2

- Views
- 312

- Replies
- 16

- Views
- 344