If i have ONLY logarithmic divergences as [tex] \lambda \rightarrow \infty [/tex] of the form(adsbygoogle = window.adsbygoogle || []).push({});

[tex] log(a+\lambda ^{n}) [/tex] or [tex] log (\lambda ) [/tex] or [tex] log^{k}(\lambda) [/tex] for some real numbers a,n and k HOW many counterterms should i put into de Lagrangian in order to make it FINITE ?? , the idea is let us suppose we use DIMENSIONAL REGULARIZATION so we only had logarithmic divergent integrals (and assuming that power law divergences can be reduced by dimensional regularization or other method to only logarithmic divergences), how many counterterms should i add to the original lagrangian to obtain finite results ??

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A question on counterterms

Loading...

Similar Threads - question counterterms | Date |
---|---|

I Question about charge | Wednesday at 3:24 PM |

B Questions about Identical Particles | Mar 12, 2018 |

I Some (unrelated) questions about the measurement problem | Mar 9, 2018 |

B Questions about parity | Mar 8, 2018 |

Counterterms in saddle point expansion | Dec 21, 2014 |

**Physics Forums - The Fusion of Science and Community**