Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A ray against Au and Be

  1. Aug 17, 2014 #1
    Why do alpha ray tear out neutron in Be, but dont do such thing in Au?
     
  2. jcsd
  3. Aug 17, 2014 #2

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    It is difficult to know how to answer that other than to say "because it can" but using bigger words.

    1. we talk about alpha particles rather than rays
    2. "tearing out" is not a good way to think of what happens
    3. some isotopes of gold do undergo alpha-decay

    If you think of a nucleus as a kind of liquid that is constantly shaking, then some nuclei shake hard enough that droplets fly off, some don't, it depends on how hard the nuclei is held together, which depends on the balance between protons and neutrons - the strong force vs the coulomb force.
     
  4. Aug 17, 2014 #3
    Thanks for the answer, so can we say that it is because the strenght of coulomb force in this situation is usually higher than atomic bounds in Be, but lower than atomic bounds in Au(I even dont know if bounds are more strenght in Au than Be)
     
  5. Aug 18, 2014 #4

    e.bar.goum

    User Avatar
    Science Advisor
    Education Advisor

    It's nothing about atomic bonds. This is pure nuclear physics! But you're correct to invoke the coloumb force.

    Beryllium-9 is a "fragile" or "weakly bound" nucleus, and it's quite easy to liberate a neutron in a direct breakup process:

    9Be + a -> 3a + n.

    The threshold for this is 1.57 MeV, so it's not hard to liberate a neutron. This is why a common laboratory source of neutrons is an Am-Be source - the Am decays giving ~5.1 MeV alpha particle, which breaks up the Be, giving a neutron.

    On the other hand, if you consider the knockout reaction

    196Au+4He+n, you need at least 8.07 MeV

    The same cannot be said for 197Au.

    This is not even considering the different charges of 197Au and 9Be - the extra 75 protons will make it much harder for the alpha particle to come in close enough to knock out a neutron from gold.
     
    Last edited: Aug 18, 2014
  6. Aug 18, 2014 #5
    Thanks for the answer. I dont know any of the nuclear physics so this is much more than I expected. Is this why Rutherford used Gold in his experiment? What will happen if we use any other material such as any other metal like iron, or non metal like carbon
     
  7. Aug 18, 2014 #6

    e.bar.goum

    User Avatar
    Science Advisor
    Education Advisor

    In the Geiger-Marsden experiment (aka the Rutherford experiment, but Geiger and Marsden did the work) you use gold because it's heavy and it's pure. The fact it has a lot of protons means you see the effect of elastic scattering so much more. You could use pretty much any element, but you're best off using something like gold or lead, since you will get more back-angle scattering. The chemistry does not matter at all - you can use a metal or a non-metal.

    The ability to free a neutron has nothing at all to do with this experiment, as you're only investigating the Coulomb part of the nuclear potential - although if you used a weakly bound nucleus you would start to see breakup which would make your results a bit confusing.
     
  8. Aug 18, 2014 #7

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    @e.bar: isn't onerbeyaz asking about alpha decay?

    Certainly the Rutherford exp could be done with any atoms... and any charged particle. Au and alphas were used to help control variables and they were handy.

    Quite a lot of experiments end up using particular materials over others simply because the experimenter happened to have some in the lab at the time.
     
  9. Aug 18, 2014 #8

    e.bar.goum

    User Avatar
    Science Advisor
    Education Advisor

    I interpreted "Why do alpha ray tear out neutron in Be" as an alpha particle reacting with Be to produce a neutron rather than alpha decay, as both 9Be and 197Au are stable to alpha decay. Using alpha+9Be as a neutron source is a very common trick.

    onerbeyaz was asking about the rutherford experiment previously, which I assume they are referring to now?

    Yeah, that's definitely the case with gold in experiments these days, and I assume it was the same with Geiger and Marsden - 197Au is the only stable isotope of gold, so if you want an isotopically pure sample of anything on the cheap, you go with gold (other experimental considerations not withstanding of course). It's also very easy to work - you can have a self-supporting target virtually as thin as you want. Gold is very commonly used as a calibration target for elastic scattering.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: A ray against Au and Be
  1. Against Realism (Replies: 153)

  2. Against realism (Replies: 64)

  3. Interferences in a Ray (Replies: 14)

  4. Force of a ray (Replies: 2)

Loading...