- #1
- 3,298
- 683
d[itex]^{2}[/itex]u/ds[itex]^{2}[/itex]= cosu[(du/ds)[itex]^{2}[/itex] - k[itex]^{2}[/itex]]
d[itex]^{2}[/itex]u/ds[itex]^{2}[/itex]= cosu[(du/ds)[itex]^{2}[/itex] - k[itex]^{2}[/itex]]
"cosu" is cos(u)? Since the independent variable, s, does not appear explicitely in that equation you can use a technique called "quadrature".
Let v= du/ds so that [itex]d^2u/ds^2=dv/ds[/itex] but, by the chain rule, dv/ds= (dv/du)(du/ds)= v(dv/du) so your equation becomes [itex]v dv/du= cos(u)(v^2+ k^2)[/itex]
That's a separable first order equation. Once you have solved it for v, integrate to find u.