# A simple differential equation!

## Main Question or Discussion Point

Just out of pure curiosity, can anyone here give me any advice on the problem of solving the following differential equation

$$\left\{\sum_i \vec{\alpha}_i \cdot \nabla_i + \sum_{i neq j}\beta_{ij}\delta(x_i -x_j)\delta(\tau_i - \tau_j) \right\}\vec{\psi} = K\frac{\partial}{\partial t}\vec{\psi} = iKm\vec{\psi}.$$

where,

$$[\alpha_{ix} , \alpha_{jx}] \equiv \alpha_{ix} \alpha_{jx} + \alpha_{jx}\alpha_{ix} = \delta_{ij}$$

$$[\alpha_{i\tau} , \alpha_{j\tau}] = \delta_{ij}$$

$$[\beta_{ij} , \beta_{kl}] = \delta_{ik}\delta_{jl}$$

$$[\alpha_{ix}, \beta_{kl}]=[\alpha_{i\tau}, \beta_{kl}] = 0 \text{ where } \delta_{ij} = \left\{\begin{array}{ c c } 0, & \text{ if } i \neq j \\ 1, & \text{ if } i=j \end{array} \right.$$

Any advice on approaching this problem would be greatly appreciated.

Thank you very much!

Related Differential Equations News on Phys.org
Just out of pure curiosity, can anyone here give me any advice on the problem of solving the following differential equation

$$\left\{\sum_i \vec{\alpha}_i \cdot \nabla_i + \sum_{i neq j}\beta_{ij}\delta(x_i -x_j)\delta(\tau_i - \tau_j) \right\}\vec{\psi} = K\frac{\partial}{\partial t}\vec{\psi} = iKm\vec{\psi}.$$

where,

$$[\alpha_{ix} , \alpha_{jx}] \equiv \alpha_{ix} \alpha_{jx} + \alpha_{jx}\alpha_{ix} = \delta_{ij}$$

$$[\alpha_{i\tau} , \alpha_{j\tau}] = \delta_{ij}$$

$$[\beta_{ij} , \beta_{kl}] = \delta_{ik}\delta_{jl}$$

$$[\alpha_{ix}, \beta_{kl}]=[\alpha_{i\tau}, \beta_{kl}] = 0 \text{ where } \delta_{ij} = \left\{\begin{array}{ c c } 0, & \text{ if } i \neq j \\ 1, & \text{ if } i=j \end{array} \right.$$

Any advice on approaching this problem would be greatly appreciated.

Thank you very much!
It doesn't look simple to me ...lol...