Let A and B be square matrices of order n, such that B = 2A - I. (1) One has to proove that B is involutory (B^2 = I) <=> A is idempotent (A^2 = A).(adsbygoogle = window.adsbygoogle || []).push({});

Starting off with direction <= , one multiplies (1) with A from the right and from the left, separately, and obtains the results BA = A, and AB = A, respectively. This implies B = I, and I is an involutory matrix, so that direction is prooved. (I hope, that's why I'm asking.)

The second direction, => , causes trouble and I'd appreciate any help. I tried multiplying (1) with B, but it didn't seem to help. Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A small matrix proof

Loading...

Similar Threads for small matrix proof |
---|

I Eigenproblem for non-normal matrix |

A Eigenvalues and matrix entries |

A Badly Scaled Problem |

I Adding a matrix and a scalar. |

B How does matrix non-commutivity relate to eigenvectors? |

**Physics Forums | Science Articles, Homework Help, Discussion**