A subspace question

Homework Helper
Let V be a vector space over a field F, and M a subspace of V, where M is not {0}. I need to show there exists a basis for V such that none of its elements belong to M.

Since M is a subspace of V, M must be a subset of V. If M = V, then there does not exist such a basis, so M must be a proper subset of V. Hence, there must exist at least one element b1 from V which is not in M. Further on, the set {b1} is independent. Now, if we consider the span [{b1}], which is a subset of V, we have two options. If [{b1}] = V, then {b1} is a basis, and we proved what we had to. If it is not so, then [{b1}] is a proper subset of V, and there (here's the tricky part) exists (?) at least one element b2 from V \ (M U [{b1}]). If I could proove the existence, I'd know how to carry on. I tried to assume the opposite - there does not exist an element b2 from V \ (M U [{b1}]). This implies that b2 must be in M. But then, {b1} should form a basis for V, which it does not, so we have a contradiction (?).

Directions would be appreciated, thanks in advance.

Office_Shredder
Staff Emeritus
Gold Member
2021 Award
Interesting that your initial statement doesn't include M=/=V, since that's obviously a requirement.

Even if you find a b2, you have to show it's linearly independent of b1. I wouldn't go the contradiction route, since it seems like far too much work.

You know that if M does not equal V, then dimM < dimV, right (strictly less than)? So you can construct a basis of M, and extend it to be a basis of V. The vectors in the new basis that were just added are not elements of M, which is important. So say the basis of M is {$$m_1, m_2, ... m_k$$} and the basis of V is {$$m_1, m_2, .... ,m_k, v_1,...v_n$$}. Given this, can you find a way of replacing the m's with vectors that aren't in M (which has to be closed under addition, a big hint) such that the set is still a basis?

Yeah, with the hint above, I have an idea:

Suppose dimM < dimV and M has a basis {m1, m2, ..., mk}. Add to this basis some vectors called v1, v2,..., vn such that {m1, m2,...mk, v1, v2,..., vn} becomes a basis of V. Of course, v1, v2,..., vn are not in M.

Define u1 = m1 + v1, u2 = m2 + v1, ..., uk = mk + v1

By using definiton, we can prove the vector system {u1, u2,..., uk, v1, v2,...,vn} is still independent in V, thus it is a basis of V.

However all elements of this new basis of V are not in M. The proff is complete. :)

Homework Helper
Office_Shredder said:
Interesting that your initial statement doesn't include M=/=V, since that's obviously a requirement.

It's not interesting, since it isn't my statement. Office_Shredder said:
Even if you find a b2, you have to show it's linearly independent of b1.

Well, if b2 is not in [{b1}], then it is independent of b1, since there doesn't exist some a from F such that a*b1 = b2.

Thank you both for the other hints, I'll think about it.

Office_Shredder
Staff Emeritus
Gold Member
2021 Award
Well, if b2 is not in [{b1}], then it is independent of b1, since there doesn't exist some a from F such that a*b1 = b2.

That's true now that I think about it :rofl:

And by your statement, I meant the statement that you had, i.e. that someone gave you

HallsofIvy
Homework Helper
It's not interesting, since it isn't my statement. You should find it interesting since it makes your problem simple: the statement is NOT true! Counter-example take M= V.

Homework Helper
HallsofIvy said:
You should find it interesting since it makes your problem simple: the statement is NOT true! Counter-example take M= V.

OK, so the 'statement' should be: Let V be a vector space over a field F, and M be a subspace of V, where M is not a trivial subspace, i.e. it is not {0} or V.

mathwonk