A truly complicated integral

  • Thread starter gaganaut
  • Start date
  • #1
20
0
While I was working on my research problem, I came across this integral.

[tex]\int_0^{\pi}\;\frac{k_1}{-k_2\left(2R\;(k_3\cos{\alpha}+k_4\sin{\alpha})-k_5\right)^{1.5}}[/tex]

All the [tex]k_i\;'s[/tex] are constants and so is R.

I tried writing out an infinite series for [tex]\left(2R\;(k_3\cos{\alpha}+k_4\sin{\alpha})-k_5\right)^{-1.5}[/tex] in Maple and then integrating. But the solution is nasty with the first 4 terms considered. It has got quite a few terms to deal with.

I then tried performing numerical integration by using the Simpson's rule, but the solution again has too many terms in it.

So is there any easier way to solve this or will I have to live with the multi-term solution that I get from both the methods I used?

Any sort of help will be highly appreciated.

Thanks
 

Answers and Replies

  • #2
CompuChip
Science Advisor
Homework Helper
4,302
47
I did the integration in Mathematica and it gave me
[tex]-\frac{2 F_1\left(-\frac{1}{2};\frac{1}{2},\frac{1}{2};\frac{1}{2};\left\{\frac{2 R c_3+c_5}{2 R \sqrt{\frac{c_3^2}{c_4^2}+1} c_4+c_5},\frac{c_5-2 R c_3}{2 R
\sqrt{\frac{c_3^2}{c_4^2}+1} c_4+c_5}\right\},\left\{-\frac{2 R c_3+c_5}{2 R \sqrt{\frac{c_3^2}{c_4^2}+1} c_4-c_5},\frac{2 R c_3-c_5}{2 R
\sqrt{\frac{c_3^2}{c_4^2}+1} c_4-c_5}\right\}\right) c_1 \left(\sqrt{2 R c_3-c_5} \sqrt{\frac{R \left(c_3^2+\sqrt{\frac{c_3^2}{c_4^2}+1} c_4 c_3+c_4^2\right)}{2
R \left(c_3^2+c_4^2\right)-\sqrt{\frac{c_3^2}{c_4^2}+1} c_4 c_5}} \sqrt{\frac{R \left(c_3^2-\sqrt{\frac{c_3^2}{c_4^2}+1} c_4 c_3+c_4^2\right)}{2 R
\left(c_3^2+c_4^2\right)+\sqrt{\frac{c_3^2}{c_4^2}+1} c_4 c_5}}+\sqrt{-2 R c_3-c_5} \sqrt{\frac{R \left(c_3^2-\sqrt{\frac{c_3^2}{c_4^2}+1} c_4
c_3+c_4^2\right)}{2 R \left(c_3^2+c_4^2\right)-\sqrt{\frac{c_3^2}{c_4^2}+1} c_4 c_5}} \sqrt{\frac{R \left(c_3^2+\sqrt{\frac{c_3^2}{c_4^2}+1} c_4
c_3+c_4^2\right)}{2 R \left(c_3^2+c_4^2\right)+\sqrt{\frac{c_3^2}{c_4^2}+1} c_4 c_5}}\right)}{R c_2 c_4 \sqrt{-2 R c_3-c_5} \sqrt{2 R c_3-c_5}}[/tex]

where F1 is some Appell hypergeometric function...
so somehow I'm not convinced that there is a "nice" solution.
 
  • #3
22
0
Well its straight forward to get it into the form

[tex]\int_{0}^{\pi}\frac{Adx}{(sin(x+\alpha)-B)^\frac{3}{2}}[/tex]

where A, B and alpha are functions of R and the K's

you could then try a substitution like

[tex]y=sin(x+\alpha)+A\;\;\;\;;dx=\frac{dy}{cos(arcsin(y-A)))}[/tex]

to give

[tex]\int_{sin(\alpha)+A}^{sin(\alpha+\pi)+A}\frac{Ady}{sin(arcsin(y-A)-\frac{\pi}{2})x^\frac{3}{2}}[/tex]

maybe then try integration by parts...
 

Related Threads on A truly complicated integral

  • Last Post
Replies
1
Views
540
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
9
Views
3K
  • Last Post
2
Replies
32
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
5
Views
3K
  • Last Post
Replies
2
Views
2K
Replies
17
Views
4K
Top