- #1

- 84

- 0

_{n}) is bounded, then the sum [tex]\sum x_n y_n[/tex] converges.

Find a counterexample that shows this isn't true when [tex]\sum x_n[/tex] is conditionally convergent.

I'm honestly not to sure where to begin with this one. I was thinking Monotone Convergence Theorem, but that might not be necessarily true for x

_{n}Any suggestions would be fantastic!