- #1
- 1
- 0
hello sir ....can any one explain me the value of (U) at infinity with respect to earth as reference point
As the other answers implied, that isn't correct. Mgh is as typically used is a simplification for constant g. But for "escape", you'd combine with the equation for gravitational acceleration and integrate over the infinite distance to escape. That's how escape velocity is found and you can find the derivation on its wiki page.Potential energy is given by 'mgh' where the 'g' is acceleration due to the Earth's gravity. As soon as you escape the Earth's gravitational field, it stops affecting you. So the value of PE at infinity doesn't really come up.
Ya I realized that. Do I feel silly!As the other answers implied, that isn't correct. Mgh is as typically used is a simplification for constant g. But for "escape", you'd combine with the equation for gravitational acceleration and integrate over the infinite distance to escape. That's how escape velocity is found and you can find the derivation on its wiki page.
And due to the continuous nature of the gravitational force equation, there is, of course, no distance where the force is exactly zero and earth's gravity stops affecting you.
As others have pointed out, typically the potential energy is conventionally defined as U = 0 when the distance is infinity, r = ∞. Following this convention, U is negative for values of r < ∞. In other words, most of the time U is negative when an object is near Earth.hello sir ....can any one explain me the value of (U) at infinity with respect to earth as reference point