Unique Decomposition of Elements in an Abelian Group

In summary, the conjecture states that A_{r} is a subgroup of A with order r. The proof of this conjecture uses the fact that A_{r} * A_{s} is a homomorphism and that it is injective. If this homomorphism is also surjective, then the conjecture is proved.
  • #1
UNChaneul
18
0

Homework Statement


Let [itex]A[/itex] be an abelian group, written additively, and let [itex]n[/itex] be a positive integer such that [itex]nx=0[/itex] for all [itex]x \in A[/itex]. Such an integer n is called an exponent for A. Assume that we can write [itex]n=rs[/itex], where r, s are positive relatively prime integers. Let [itex]A_{r}[/itex] consist of all [itex]x \in A[/itex] such that [itex]rx=0[/itex], and similarly [itex]A_{s}[/itex] consist of all [itex]x \in A[/itex] such that [itex]sx=0[/itex]. Show that every element [itex]a \in A[/itex] can be written uniquely in the form [itex]a=b+c[/itex], with [itex]b \in A_{r}[/itex], and [itex]c \in A_{s}[/itex]. Hence [itex]A=A_{r} \oplus A_{s}[/itex].


Homework Equations



Theorem #1
The abelian group A is a direct sum of subgroups B and C if and only if [itex]A=B+C[/itex] and [itex]B \cap C = {0}[/itex]. This is the case if and only if the map [itex]B*C \to A[/itex] given by [itex](b,c) \mapsto b+c[/itex] is an isomorphism.


The Attempt at a Solution


So essentially, what needs to be shown is that [itex]A=A_{r}+A_{s}[/itex] and that [itex]A_{r} \cap A_{s} = {0}[/itex]. I went ahead and used the latter form of Theorem #1, namely showing that [itex]A_{r} * A_{s} \to A[/itex] is an isomorphism. I already showed that [itex]A_{r} * A_{s}[/itex] is a homomorphism and that it is injective. So, the last step is to show that it is also surjective in order to establish that it is an isomorphism.

Conjecture #1: [itex]A_{r}[/itex] is a subgroup of [itex]A[/itex] with order r.
Proof: We know that [itex]0 \in A_{r}[/itex] since [itex]r0=0[/itex]. Suppose [itex]a_{1},a_{2} \in A_{r}[/itex]. Then [itex]r(a_{1}+a_{2})=r a_{1} + r a_{2} = 0[/itex] since r is some positive integer (not necessarily in A). It also follows that [itex]-a_{1} \in A_{r}[/itex] since [itex]r(-a_{1})=0[/itex]. Therefore [itex]A_{r}[/itex] is a subgroup of [itex]A[/itex].

This next part of the proof of the conjecture is what I am concerned about. Suppose [itex]m \in A_{r}[/itex] such that [itex]m \neq 0[/itex]. We know [itex]m[/itex] exists since for some [itex]y \in A, rsy=ny=0[/itex], so [itex]m=sy[/itex] is one possible choice, assuming [itex]sy \neq 0[/itex] for at least one [itex]y[/itex]. This is clearly the case or we can continue down by descent, replacing [itex]n[/itex] with [itex]s[/itex] in the problem. Now out of the possible choices for [itex]m[/itex], choose the smallest one. I think [itex]m[/itex] generates [itex]A_{r}[/itex], but I am not sure how to prove this. Maybe it isn't even a generator, so the entire method is flawed.

However, if it is, then the rest of the proof follows, since we can then show that since we would know [itex]m[/itex] generates [itex]A_{r}[/itex] and [itex]rm=0[/itex], so [itex]m[/itex] has period [itex]r[/itex]. It then follows that since [itex]A_{r} \cap A_{s} = {0}[/itex], and [itex]A_{r} * A_{s}[/itex] has order [itex]rs=n[/itex], [itex]A_{r}*A_{s}[/itex] must be surjective onto [itex]A[/itex] since [itex]A[/itex] also has order [itex]n[/itex], and [itex]A_{r}, A_{s}[/itex] were shown to be subgroups of [itex]A[/itex].

This is using the fact that the order of [itex]A[/itex] should be [itex]n[/itex] since [itex]nx=0[/itex] for all [itex]x \in A[/itex], which includes for its generators.


The joys of self studying algebra :D
 
Physics news on Phys.org
  • #2
Now that I think about I think I implicitly assumed that we are using the smallest possible exponent [itex]n[/itex], so things are awkward if we are not... for instance if [itex]A[/itex] were the group who elements you get by addition modulo 6. We could use [itex]n=6, n=12,...[/itex], and I assumed [itex]n=6[/itex] would be the choice. So that is another problem. Makes me think I am approaching the problem the wrong way.
 
Last edited:
  • #3
Nevermind, solved my own problem. Guess writing things up in a different form can be useful haha.
 

1. What is the purpose of studying Abstract Algebra problems?

The main purpose of studying Abstract Algebra problems is to understand the fundamental structures and concepts in mathematics. Abstract Algebra allows us to study mathematical objects and their properties in a unified and abstract way, which can then be applied to various areas of mathematics and beyond.

2. What are the basic topics covered in Abstract Algebra?

The basic topics covered in Abstract Algebra include groups, rings, fields, and vector spaces. These are algebraic structures that have certain operations and properties that are studied and applied in abstract algebra.

3. How is Abstract Algebra different from other branches of algebra?

Abstract Algebra is different from other branches of algebra, such as elementary algebra or linear algebra, because it focuses on studying algebraic structures in an abstract and general way, rather than specific numbers or equations. It also deals with more complex structures and operations, such as groups and fields, which have a wide range of applications.

4. What are some real-world applications of Abstract Algebra?

Abstract Algebra has many real-world applications, including cryptography, coding theory, and physics. It is also used in computer science and engineering to study and design algorithms, data structures, and computer systems.

5. What are some tips for solving Abstract Algebra problems?

Some tips for solving Abstract Algebra problems include understanding the definitions and properties of the algebraic structures involved, breaking down the problem into smaller, simpler steps, and practicing with various types of problems to gain a deeper understanding of the concepts. It is also helpful to work through examples and exercises to solidify your understanding of the material.

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
709
  • Calculus and Beyond Homework Help
Replies
13
Views
2K
  • Calculus and Beyond Homework Help
Replies
5
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
568
  • Calculus and Beyond Homework Help
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
11
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
769
  • Calculus and Beyond Homework Help
Replies
12
Views
2K
  • Calculus and Beyond Homework Help
Replies
6
Views
2K
Back
Top