The question:(adsbygoogle = window.adsbygoogle || []).push({});

If G is the additive group Q/Z, what are the elements of the subgroup G(2)? Of G(P) for any positive prime P?

Where G(n)={a e G| |a| = n^(k) for some k is greater than or equal to 0}...That is the set of all a in G, s.t. the order of a is some power of n. (But since it is the additive group, I suppose it would just a be a multiple of n)

How do I even begin with this? Aren't the elements of Q/Z sets? The collections of right cosets? and don't they have infinite order?....

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Abstract Algebra - Q/Z

**Physics Forums | Science Articles, Homework Help, Discussion**