(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let G=<x, y| x^{2n}=e, x^n=y^2, xy=yx^{-1}>. Show Z(G)={e, x^n}.

2. Relevant equations

3. The attempt at a solution

So I tried breaking this up into cases:

Case 1: If n=1. then |x|=1 or 2. If |x|=1, then x=e and x would obviously be in the center.

If |x|=2, then xy=yx (since (y^-1)xy=x^-1 and x^-1 = x when |x|=2). Thus G is abelain, and Z(G) would be {e,x,y^2} but since y^2=x, are Z(G) would be {e,x}.

Case 2. n>1

If n>1 and the order of x>2, then xx^(n)=x^(n+1)=x^(n)x and x^(n)y=y^2y=y^3=yy^2=yx^n. Since x^n commutes with the generates of G, x^n commutes with all of G. But G is not abelain, because if it were, y^-1xy=y^-1yx=x=x^-1, which is not true when |x|>2. Thus, the only elements in Z(G) are {e,x^n}

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Abstract Algebra question

**Physics Forums | Science Articles, Homework Help, Discussion**