1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Acceleration in a rotating frame

  1. May 11, 2005 #1
    I'm getting confused by this. I have a handout from a lecture that has a derivation that ends with

    "[tex]\vec{a} = \vec{a'} + 2\vec{\omega} \times \vec{v'} + \vec{\omega} \times (\vec{\omega} \times \vec{r})[/tex]

    Multiplying through by mass, m

    [tex]m\vec{a} = \vec{F_{ext}} = m\vec{a'} + 2m\vec{\omega} \times \vec{v'} + m\vec{\omega} \times (\vec{\omega} \times \vec{r})[/tex]

    We preserve Newton II in rotating frame by writing [tex]\vec{F'_{net}} = m\vec{a'}[/tex] where [tex]\vec{F'_{net}}[/tex] is the net force measured by observer in rotating frame.

    ie. [tex]\vec{F'_{net}} = \vec{F_{ext}} - 2m(\vec{\omega} \times \vec{v'}) - m[\vec{\omega} \times (\vec{\omega} \times \vec{r})][/tex]"

    It's really the last line that's confusing me. The expressions for the Coriolis and centrifugal forces are

    [tex]\vec{F_{Cor}} = -2m(\vec{\omega} \times \vec{v'})[/tex] and [tex]\vec{F_{cent}} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})[/tex], so why isn't it

    [tex]\vec{F'_{net}} - \vec{F_{Cor}} - \vec{F_{cent}} = \vec{F_{ext}}[/tex]?
     
  2. jcsd
  3. May 11, 2005 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Hold on a second,who's [itex] \vec{F}_{ext} [/itex]...?

    Daniel.
     
  4. May 11, 2005 #3
    "Sum of real forces (electrical, magnetic, gravitational, etc); only these forces are observed in stationary frame".

    All I'm getting confused about is the signs of those forces.
     
  5. May 11, 2005 #4

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Why shouldn't the NET force be the sum of all external forces...?Afer all,both Coriolis & centrifugal are inertial forces,they're not external forces.

    Daniel.
     
  6. May 11, 2005 #5
    Grr, I know that, but:

    [tex]m\vec{a} = \vec{F_{ext}} = m\vec{a'} + 2m\vec{\omega} \times \vec{v'} + m\vec{\omega} \times (\vec{\omega} \times \vec{r})[/tex]

    ie. [tex]\vec{F'_{net}} = \vec{F_{ext}} - 2m(\vec{\omega} \times \vec{v'}) - m[\vec{\omega} \times (\vec{\omega} \times \vec{r})][/tex]"

    The first and second lines aren't the same. If [tex]\vec{F'_{net}} = m\vec{a'}[/tex], then the first line is [tex]m\vec{a} = \vec{F_{ext}} = \vec{F'_{net}} - \vec{F_{Cor}} - \vec{F_{cent}}[/tex] :confused:.
     
    Last edited: May 11, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Acceleration in a rotating frame
  1. Accelerating frames (Replies: 9)

  2. Frame rotation (Replies: 2)

Loading...