I'm getting confused by this. I have a handout from a lecture that has a derivation that ends with(adsbygoogle = window.adsbygoogle || []).push({});

"[tex]\vec{a} = \vec{a'} + 2\vec{\omega} \times \vec{v'} + \vec{\omega} \times (\vec{\omega} \times \vec{r})[/tex]

Multiplying through by mass, m

[tex]m\vec{a} = \vec{F_{ext}} = m\vec{a'} + 2m\vec{\omega} \times \vec{v'} + m\vec{\omega} \times (\vec{\omega} \times \vec{r})[/tex]

We preserve Newton II in rotating frame by writing [tex]\vec{F'_{net}} = m\vec{a'}[/tex] where [tex]\vec{F'_{net}}[/tex] is the net force measured by observer in rotating frame.

ie. [tex]\vec{F'_{net}} = \vec{F_{ext}} - 2m(\vec{\omega} \times \vec{v'}) - m[\vec{\omega} \times (\vec{\omega} \times \vec{r})][/tex]"

It's really the last line that's confusing me. The expressions for the Coriolis and centrifugal forces are

[tex]\vec{F_{Cor}} = -2m(\vec{\omega} \times \vec{v'})[/tex] and [tex]\vec{F_{cent}} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})[/tex], so why isn't it

[tex]\vec{F'_{net}} - \vec{F_{Cor}} - \vec{F_{cent}} = \vec{F_{ext}}[/tex]?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Acceleration in a rotating frame

**Physics Forums | Science Articles, Homework Help, Discussion**