1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Acceleration of Hinges

  1. Jun 22, 2016 #1
    This is a problem posted by a member on Brilliant.org (https://brilliant.org/problems/acceleration-of-hinges/). I found one way to solve the problem, but it is really long, and i am looking for some different solutions. The problem is-

    e172ee5a667b68a172bf57e4c88e60af6462f29d.png


    Four similar rods of uniform density are connected with frictionless hinges. This frame is placed on a horizontal smooth tabletop, such that its shape is a square. Vertex P is acted upon by a horizontal force in the direction of the diagonal, and due to this force it begins to move at an acceleration of ##a_P##.

    If the initial acceleration of the opposite vertex Q is ##a_Q= k.a_P## then find k.

    k is positive if Q moves away from P and k is negative if Q moves closer to P.

    Please post any solution or approach that can be applied in it.
    Thanks.
     
  2. jcsd
  3. Jun 22, 2016 #2

    A.T.

    User Avatar
    Science Advisor
    Gold Member

    Is at least the result you get from the long solution something simple? Then there is a chance for a simpler way to solve it.
     
  4. Jun 22, 2016 #3
    I solved it using the work-energy theorem, by finding the energy of the system after displacing by a small amount, and the work done by the force applied at point P, somewhat similar to what someone posted there. Finding the energy is pretty long, but yes the results are simple expressions in ##a_P## and ##a_Q##.
     
  5. Jun 22, 2016 #4

    A.T.

    User Avatar
    Science Advisor
    Gold Member

    I would try to use the center of mass frame, where the kinematics is nicely symmetrical. The center of mass frame is non-inertial, but has a known acceleration, and thus a known inertial force field. Since the inertial force field is uniform, it doesn't create any torques at the bars, around their centers of mass.
     
  6. Jun 22, 2016 #5
    First you must obtain differential equations of motion not at the single moment but for all ##t##. For ##t>0## the square will deform to a rhombus. So this is a system with two degrees of freedom

    0c508385e751.png

    Let ##X## be the axis of inertial frame and ##x## be the coordinate of the center of the rhombus. The generalized coordinates are ##\alpha,x##.

    We shall assume that the force ##\boldsymbol F## does not depend on time. It does not matter since we will consider the differential equations at initial moment only. Then find the kinetic energy to this system ##T=T(\dot\alpha,\dot x,\alpha,x)## You will see that actually ##T## does not depend on ##x,\alpha##. And write the Lagrange equations
    $$\frac{d}{dt}\frac{\partial T}{\partial \dot x}-\frac{\partial T}{\partial x}=Q_x,\quad \frac{d}{dt}\frac{\partial T}{\partial \dot \alpha}-\frac{\partial T}{\partial \alpha}=Q_\alpha.$$
    The first equation will be ##4m\ddot x=F## (##m## is the mass of the rod), but the second one is not so evident, you have to calculate for it.
     
  7. Jun 22, 2016 #6
  8. Jun 22, 2016 #7
    Sorry, but i don't know Lagrangian Mechanics and hence don't understand the solution.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Acceleration of Hinges
  1. Hinged Stick Experiment (Replies: 11)

Loading...