(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Determine the accumulation points of the following set:

z(sub n)=i^n, (n=1,2,....);

2. Relevant equations

3. The attempt at a solution

My book says z(sub n) does not have any accumulation points. When mapped onto a complex plane, z(sub n) forms a circle. For any set to contained each of its accumulation points, the set has to be closed. And the definition of a closed set is a set containing all of its boundary points. z(sub n) is a close set since the only points of z(sub n) are: i,-1,-i and 1. How can any of those four points not be accumulation points?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Accumulation points of a set

**Physics Forums | Science Articles, Homework Help, Discussion**