hi everybody.(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\textbf{J}_1[/tex] and [tex]\textbf{J}_2[/tex] are angular momentum (vector-)operators.

In many textbooks [tex]\left[\textbf{J}_1,\textbf{J}_2\right] = 0[/tex] is stated to be a condition to show that [tex]\textbf{J}=\textbf{J}_1+\textbf{J}_2[/tex] is also an angular momentum (vector-)operator. But what is meant with [tex]\left[\textbf{J}_1,\textbf{J}_2\right] = 0[/tex]. When i show that [tex]\textbf{J}[/tex] is an angular momentum operator (i.e. [tex]\left[J_x,J_y\right]=iJ_z[/tex] ...) i always need the condition [tex]\left[(\textbf{J}_1)_x,(\textbf{J}_2)_x\right][/tex] and the like. So the components of [tex]\textbf{J}_1[/tex] and [tex]\textbf{J}_2[/tex] should mutually commute. Is this the meaning of [tex]\left[\textbf{J}_1,\textbf{J}_2\right] = 0[/tex]? For me it looks like [tex](\textbf{J}_1)_x(\textbf{J}_2)_x+(\textbf{J}_1)_y(\textbf{J}_2)_y+(\textbf{J}_1)_z(\textbf{J}_2)_z-(\textbf{J}_2)_x(\textbf{J}_1)_x-(\textbf{J}_2)_y(\textbf{J}_1)_y-(\textbf{J}_2)_z(\textbf{J}_1)_z=0[/tex] and this does not imply the conditions i need (as far as i see).

I know Operators acting on different spaces commute and this fact is often used but i want to know how to treat the situation above only with the formal condition [tex]\left[\textbf{J}_1,\textbf{J}_2\right] = 0[/tex].

thanks and greetings tommy.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Addition of angular momenta

**Physics Forums | Science Articles, Homework Help, Discussion**