(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I do not know if I am allowed to have two question in one post, so forgive me if I am breaking a rule. These two are frustrating me as I cannot see where the error in my process is.

1) A 1.00-mol sample of an ideal diatomic gas, originally at 1.00 atm and 10 ∘C, expands adiabatically to 1.75 times its initial volume. What are the final temperatures for the gas?

2) An ideal monatomic gas, consisting of 2.8 mol of volume 8.3×10−2 m3 , expands adiabatically. The initial and final temperatures are 95 ∘C and -81 ∘C. What is the final volume of the gas?

2. Relevant equations

P_1*V_1 = P_2*V_2

PV = nRT

PV^γ = constant

TV^(γ-1) = constant

3. The attempt at a solution: I know we needed final pressure for this; I had calculated it and was told it was correct. Though the answer was rounded, I kept my final pressure unaltered, since the calculator I am using allows me to assign single letter variables to numerical constants. The final pressure I got was 1 * (1/1.75)^1.4 =~ .457 when rounded.

Attempt at #1

I calculated the true initial volume via the constants given; I converted the pressure (1 atm) to 101325 Pascals, and the temperature from Celsius to Kelvin. I then solved for Volume, then I multiplied by 1.75 to get the final volume, which gave me approximately .0398, but I again did not round and assigned it to a letter. I used algebra to get T_f = P_f*V_f / n*R = about 221 when rounded (like the other values, I assigned it a letter for an exact number). Then I subtracted 273.15 from that number and got about -52 degrees Celsius; rounded to two sigfigs as requested by the problem. But that is still wrong; I do not know where my error is.

Attempt at #2:I felt this was simple, T_1*(V_1)^(1.4-1) = T_2*(V_2)^(1.4-1). Once again I set up my equation by changing Celsius to Kelvin, and we already had V_1, so I felt it was simple algebra.

I solved for V_2, which came out to be about .42 (4.2 * 10^-1) which I felt was reasonable given there was such a sharp decrease in temperature. Again, I was told I was wrong and I am not sure why.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Adiabatic expansion problems

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**