- #1

Kashmir

- 465

- 74

I've done this:

The eigenvalue equation of position operator is

##\hat{x}|x\rangle=x|x\rangle##

The adjoint of position operator acts as

##\left\langle x\left|\hat{x}^{\dagger}=x<x\right|\right.##

Then using above equation we've

##\left\langle x\left|x^{\dagger}\right| x\right\rangle=x\langle x \mid x\rangle##

or

##\langle x|( x^{\dagger}

|x\rangle)=\langle x|(x| x\rangle)##

Then

##x^{\dagger}|x\rangle=x|x\rangle##

Hence

##x^{\dagger}=x##

Is this correct?