Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Adjuction Formula: Ideal sheafs and tensor products

  1. Sep 30, 2008 #1
    Hey everyone, I'm a physicist trying to learn some topology. I'm now working on figuring out the Adjunction theorem, and I barely understand the proof. Here are the first two (and almost only steps)

    There exists an exact sequence on a nonsingular n-fold X with codimension 1 subvariety Y:
    [tex]0\to\mathcal{I}_Y\to\mathcal{O}_X\to\mathcal{O}_Y\to 0 [/tex]

    where I_Y is the ideal sheaf defining Y and O_{X,Y} is the structure sheaf (I think) of X and Y. Tensoring this equation with O_{X}(Y) gives

    [tex]0\to\mathcal{O}_X\to\mathcal{O}_X(Y)\to\mathcal{O}_Y(Y)\to 0 [/tex]

    Which is the first part of the proof. So I understand structure sheafs as "The set of all regular functions on X", with transition functions similar to bundles. So I would understand the first exact sequence if i just knew what an IDEAL sheaf is. So the first question is what is an ideal sheaf?

    The second question is how to take the tensor product of the sequence. I might be able to actually work it out if someone could possibly help explain what O_{X}(Y) might be...I think it's called the divisorial sheaf?

    Any help appreciated, even if it's incomplete. Thanks!
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?