I'm having issues seeing the method to go with this problem. Here it is:(adsbygoogle = window.adsbygoogle || []).push({});

Suppose that X is a linear space of dimension n, and E = {e1,...,en}, F = {f1,...,fn} are two bases of X. Prove that there is a unique invertible n*n matrix [sij] such that if a vector x belonging to X (I don't know how to make the math symbols or subscripts so please bare with me) has components [ai] with respect to E and components [bj] with respect to F, meaning that

x = Summation( i=1 to n) ai*ei, x = Summation( j=1 to n) bj*fj

then

ai = Summation( j=1 to n) sij*bj.

My book doesn't give examples so I'm having a hard time seeing how to do this problem. If E and F are bases, then they're independent so the components ai and bj are unique. Then sij is just the combination of ai and bj. I'm pretty cloudy and would appreciate all the help I could get. Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Advanced Calc problem

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**