(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A regular hexagon with center at the origin in the complex plane has opposite pairs of sides one unit apart. One pair of sides is parallel to the imaginary axis. Let R be the region outside the hexagon, and let S = [itex] \{ 1/z |x \in R} [/itex]. Then the area of S has the form a [itex]\pi +\sqrt b[/itex], where a and b are positive integers. Find a+b.

2. Relevant equations

3. The attempt at a solution

This should only require high school math although there is probably a solution using the fact that 1/z is a Mobius transformation or something else in complex analysis.

The hexagon is contained in the closed of radius 1/sqrt(3) center at the origin, which means that S is contained inside of the closed disk of radius \sqrt3 centered at the origin. So basically we need to figure out what to subtract off of 3 \pi. Anyone know how to do that?

Please just give a hint.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Aime 2008 Ii 13

**Physics Forums | Science Articles, Homework Help, Discussion**