Mathematically, how would air resistance affect trajectory?(adsbygoogle = window.adsbygoogle || []).push({});

Suppose I shoot a cannonball with initial velocity [itex] v_0 [/itex] at an angle of elevation [tex] \theta [/tex]. Air resistance is a force antiparallel to velocity, represented by the equation (according to Barron's Physics C review book!) [itex] \vec F_{air} = - c \cdot \vec v [/itex], where [itex] c [/itex] is a constant SI-expressed in kg/sec.

Because the direction of velocity changes with [itex] t [/itex], so does, as well, the direction of air resistance. To represent its effect in the x & y directions, let [itex] \alpha [/itex] represent the instantaneous angle that [itex] \vec v [/itex] makes with the x-axis. Thus, using 2D Cartesian, I represent the velocities as

[tex] \left\{ \begin{gathered} \vec v_x = \left| {v_0 } \right|\cos \theta - t\left( {c \cdot \vec v} \right)\cos \alpha \hfill \\

\vec v_y = \left| {v_0 } \right|\sin \theta - t\left( {\vec g + c \cdot \vec v \cdot \sin \alpha } \right) \hfill \\ \end{gathered} \right\} [/tex]

*But how do I find y(t) and x(t) ? ?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Air resistance & Trajectory

**Physics Forums | Science Articles, Homework Help, Discussion**