- #1

aricho

- 71

- 0

I am having trouble with the following...

(6x^2+5x-6)/(6x^2+13x+6) TIMES (3x^2-4x-4)/(3x^2-8x+4)

i can factorise them but i don't know what to do after that...

Thanks for your help

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter aricho
- Start date

- #1

aricho

- 71

- 0

I am having trouble with the following...

(6x^2+5x-6)/(6x^2+13x+6) TIMES (3x^2-4x-4)/(3x^2-8x+4)

i can factorise them but i don't know what to do after that...

Thanks for your help

- #2

Fermat

Homework Helper

- 872

- 1

Just cancel out the common factors. I don't think it can be simplified any further

- #3

aricho

- 71

- 0

yer, but what is left is nasty haha and its wrong

- #4

thorney

- 4

- 0

it simplifys all the way too 1 eventually doesn't it?

- #5

aricho

- 71

- 0

this is what i can get to...

{(3x+3)(2x-2)/(2x+3)(3x+2)} + {(3x+2)(x-2)/(3x-2)(x-2)}

and the answer is...

{2(9x^2+4)}/(3x-2)(3x+2)

i just don't know how to get there haha

- #6

aricho

- 71

- 0

nice...it does...how about it with a plus instead of a multiply between the two factions

- #7

bomba923

- 760

- 0

Hmm, I seem to get

[tex]\left( {\frac{{6x^2 + 5x - 6}}

{{6x^2 + 13x + 6}}} \right)\left( {\frac{{3x^2 - 4x - 4}}

{{3x^2 - 8x + 4}}} \right) = \left[ {\frac{{\left( {3x + 2} \right)\left( {2x - 3} \right)}}{{\left( {3x + 2} \right)\left( {2x + 3} \right)}}} \right]\left[ {\frac{{\left( {3x + 2} \right)\left( {x - 2} \right)}}{{\left( {3x - 2} \right)\left( {x - 2} \right)}}} \right] = \frac{{\left( {3x + 2} \right)\left( {2x - 3} \right)}}{{\left( {3x - 2} \right)\left( {2x + 3} \right)}} [/tex]

[tex]\frac{{6x^2 + 5x - 6}}{{6x^2 + 13x + 6}} + \frac{{3x^2 - 4x - 4}}

{{3x^2 - 8x + 4}} = \frac{{\left( {3x + 2} \right)\left( {2x - 3} \right)}}{{\left( {3x + 2} \right)\left( {2x + 3} \right)}} + \frac{{\left( {3x + 2} \right)\left( {x - 2} \right)}}{{\left( {3x - 2} \right)\left( {x - 2} \right)}} = \frac{{\left( {2x - 3} \right)\left( {3x - 2} \right) + \left( {3x + 2} \right)\left( {2x + 3} \right)}}{{\left( {2x + 3} \right)\left( {3x - 2} \right)}} = [/tex]

[tex] \frac{{2x - 3}}{{2x + 3}} + \frac{{3x + 2}}{{3x - 2}} = \frac{{12\left( {x^2 + 1} \right)}}{{\left( {2x + 3} \right)\left( {3x - 2} \right)}} = \frac{4}{{3x - 2}} - \frac{6}{{2x + 3}} + 2 [/tex]

[tex]\left( {\frac{{6x^2 + 5x - 6}}

{{6x^2 + 13x + 6}}} \right)\left( {\frac{{3x^2 - 4x - 4}}

{{3x^2 - 8x + 4}}} \right) = \left[ {\frac{{\left( {3x + 2} \right)\left( {2x - 3} \right)}}{{\left( {3x + 2} \right)\left( {2x + 3} \right)}}} \right]\left[ {\frac{{\left( {3x + 2} \right)\left( {x - 2} \right)}}{{\left( {3x - 2} \right)\left( {x - 2} \right)}}} \right] = \frac{{\left( {3x + 2} \right)\left( {2x - 3} \right)}}{{\left( {3x - 2} \right)\left( {2x + 3} \right)}} [/tex]

Then I suppose?aricho said:nice...it does...how about it with a plus instead of a multiply between the two factions

[tex]\frac{{6x^2 + 5x - 6}}{{6x^2 + 13x + 6}} + \frac{{3x^2 - 4x - 4}}

{{3x^2 - 8x + 4}} = \frac{{\left( {3x + 2} \right)\left( {2x - 3} \right)}}{{\left( {3x + 2} \right)\left( {2x + 3} \right)}} + \frac{{\left( {3x + 2} \right)\left( {x - 2} \right)}}{{\left( {3x - 2} \right)\left( {x - 2} \right)}} = \frac{{\left( {2x - 3} \right)\left( {3x - 2} \right) + \left( {3x + 2} \right)\left( {2x + 3} \right)}}{{\left( {2x + 3} \right)\left( {3x - 2} \right)}} = [/tex]

[tex] \frac{{2x - 3}}{{2x + 3}} + \frac{{3x + 2}}{{3x - 2}} = \frac{{12\left( {x^2 + 1} \right)}}{{\left( {2x + 3} \right)\left( {3x - 2} \right)}} = \frac{4}{{3x - 2}} - \frac{6}{{2x + 3}} + 2 [/tex]

Last edited:

- #8

aricho

- 71

- 0

is that with a plus in between the fractions?

- #9

bomba923

- 760

- 0

Yes, LaTex doesn't clearly space out the signs

- #10

TD

Homework Helper

- 1,022

- 0

[tex]\frac{{6x^2 + 5x - 6}}

{{6x^2 + 13x + 6}} \cdot \frac{{3x^2 - 4x - 4}}

{{3x^2 - 8x + 4}} = \frac{{\left( {2x + 3} \right)\left( {3x - 2} \right)}}

{{\left( {2x + 3} \right)\left( {3x + 2} \right)}} \cdot \frac{{\left( {x - 2} \right)\left( {3x + 2} \right)}}

{{\left( {x - 2} \right)\left( {3x - 2} \right)}} = 1[/tex]

Cancels out nicely

- #11

aricho

- 71

- 0

hmmm, maybe the answer is wrong... it says {2(9x^2+4)}/(3x-2)(3x+2)

- #12

thorney

- 4

- 0

or for the multiplication one you can expand the polynomial and the top clearly equals the bottom with reduced thinking needed!

Last edited:

Share:

- Replies
- 2

- Views
- 334

- Replies
- 8

- Views
- 652

- Replies
- 12

- Views
- 1K

- Last Post

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 8

- Views
- 1K

- Replies
- 4

- Views
- 575

- Replies
- 9

- Views
- 938

- Replies
- 2

- Views
- 575

- Replies
- 16

- Views
- 1K

- Last Post

- Replies
- 2

- Views
- 556