Let {h_n} be a sequence of function defined on the interval (0,1) where(adsbygoogle = window.adsbygoogle || []).push({});

h_n(x) = (n+n)x^(n-1)(1-x)

a. find lim (n-> +oo) (integral) (from 0 to 1) h_n(x) dx.

b. show that lim (n-> +oo) h_n(x) = 0 on (0, 1)

c. Show that lim (n-> +oo) (integral) (from 0 to 1) h_n(x) dx is not equal to integral (from 0 to 1) (0 dx). What went wrong?

SOlutions:

a. lim (n-> +oo) integral (from 0 to 1) h_n(x) dx

= lim (n-> +oo) integral (from 0 to 1) (n+n)x^(n-1)(1-x) dx

=lim (n-> +oo)(n+n) integral (from 0 to 1)x^(n-1)(1-x) dx

= lim (n-> +oo)(n+n) (1/n - 1/(n+1))

= lim (n-> +oo)n(n + 1) (1/((n)(n+1))

= 1.

b. I used the n-th term test in proving this... because if the series of h_n(x) is convergent then lim (n-> +oo) h_n(x) = 0 on (0, 1). But by ratio test, h_n(x) is convergent because the limit of

a(n+1)/a(n) as n -> +oo is x, but 0 < x < 1.

c. That's the part that I got stuck... well, it seems that the statement above is true... how do I solve this?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: All about sequence of functions

**Physics Forums | Science Articles, Homework Help, Discussion**