All open maps homeomorphisms?

  • Thread starter 1MileCrash
  • Start date
  • #1
1,331
45

Main Question or Discussion Point

I was told to prove that

f: X -> Y is a homeomorphism iff it is an open map

While I see that if f is a homeomorphism, it is certainly an open map, but is the implication in the other direction even true? Because I see no reason to believe it is.
 

Answers and Replies

  • #2
WannabeNewton
Science Advisor
5,803
530
That is false. I suspect they meant a bijective continuous map ##f## is a homeomorphism iff it is open iff it is closed.
 
  • #3
612
23
I was told to prove that

f: X -> Y is a homeomorphism iff it is an open map

While I see that if f is a homeomorphism, it is certainly an open map, but is the implication in the other direction even true? Because I see no reason to believe it is.
I think it should be "A bijective, continuous map ##f:X\to Y## is a homeomorphism iff it is an open map."

For fun, prove "A bijective, continuous map ##f:X\to Y## is a homeomorphism iff it is a closed map." :tongue:

Edit: WN got there first. Why you type so fast? :rofl:
 
  • #4
mathwonk
Science Advisor
Homework Helper
10,822
988
this false without some hypotheses. if X is an open subset of Y, the inclusion map is open but not a homeomorphism.

if f is projection of the plane X onto the y - axis Y, this map is open but not a homeomorphism.

If X and Y are the same set equipped with different topologies so that Y has more open sets than X, then the identity map is open but not a homeomorphism.

etc.....
 
  • #5
lavinia
Science Advisor
Gold Member
3,170
577
I was told to prove that

f: X -> Y is a homeomorphism iff it is an open map

While I see that if f is a homeomorphism, it is certainly an open map, but is the implication in the other direction even true? Because I see no reason to believe it is.
take a look at the open mapping theorem for complex analysis.

Let X be any space and Y a point. Map X to Y.
 
  • #6
1,331
45
I think it should be "A bijective, continuous map ##f:X\to Y## is a homeomorphism iff it is an open map."

For fun, prove "A bijective, continuous map ##f:X\to Y## is a homeomorphism iff it is a closed map." :tongue:

Edit: WN got there first. Why you type so fast? :rofl:
Oh, ok. But isn't that kind of trivial? If it is an open map then that is exactly the same (from what I can see) as saying that f-inverse is continuous. So basically that means I'm asked to show that f is a homeomorphism if f is continuous, f-inverse is continuous, and f is a bijection, but that's just what a homeomorphism is.
 

Related Threads on All open maps homeomorphisms?

Replies
7
Views
4K
Replies
32
Views
2K
Replies
6
Views
5K
Replies
11
Views
4K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
15
Views
903
  • Last Post
Replies
9
Views
5K
  • Last Post
3
Replies
54
Views
3K
  • Last Post
Replies
9
Views
5K
  • Last Post
Replies
20
Views
8K
Top