The alternating series test contains two conditions for convergence.(adsbygoogle = window.adsbygoogle || []).push({});

The first condition is that the nth term (extracting the power of -1) is always positive and monotonically decreasing.

The second is that the limit of that nth term goes to 0 as n goes to infinity.

I've seen a proof for it, and I've even proved it myself (although some years ago). I don't really understand why the first condition is so restrictive. It seems like the always-positive part is all you need combined with the limit going to 0.

Can someone show me an example of an alternating series for which the terms (again, without the power of -1) are always positive and that have a limit of 0, but which is NOT monotonically decreasing and diverges because of it?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Alternating Series Conditions

Loading...

Similar Threads - Alternating Series Conditions | Date |
---|---|

I Square Root in an alternating power series | Apr 24, 2016 |

I Alternating Series, Testing for Convergence | Apr 13, 2016 |

Alternative examples, alternating series test | Oct 22, 2015 |

Alternating series question | Mar 18, 2015 |

Understanding this proof involving alternating series | Aug 28, 2013 |

**Physics Forums - The Fusion of Science and Community**