- #1
- 14
- 0
Hello all,
I am an AP Chemistry student currently studying electrochemistry. The other day, some friends of mine and I discovered some waste copper oxide laying around the lab. We thought, "Why not reduce all the copper out of this?", and so we set to work.
We got our experiment authorized by the teacher, and constructed a voltaic cell based on the reduction of copper through the oxidation of zinc. We used nitric acid to make a solution of copper nitrate from the copper oxide, and boiled it down to solid to remove excess HNO3 and dissolved it in distilled water. Zinc nitrate was prepared as the anode solution. A KCl salt bridge was constructed.
The cell itself works fine, but I have a question about the time this reaction will take to complete. The reaction should complete when all of the copper ions have reduced. There are 2 Faradays of charge transferred per mole, and 96500 Coulombs of charge in a Faraday. Since Amperes measure Coulombs per second, I need to know how many amps the cell draws when short circuiting to calculate how long the reaction should take to reach completion.
Now, the fundamental question facing me: How do I calculate the amperage a voltaic cell runs at when shorted out? I realize that I could just measure it with my handy-dandy multimeter, but I really would rather learn to calculate it, and thus gain a further understanding of electrochemistry. Any advice is much appreciated.
~SlidemanD~
I am an AP Chemistry student currently studying electrochemistry. The other day, some friends of mine and I discovered some waste copper oxide laying around the lab. We thought, "Why not reduce all the copper out of this?", and so we set to work.
We got our experiment authorized by the teacher, and constructed a voltaic cell based on the reduction of copper through the oxidation of zinc. We used nitric acid to make a solution of copper nitrate from the copper oxide, and boiled it down to solid to remove excess HNO3 and dissolved it in distilled water. Zinc nitrate was prepared as the anode solution. A KCl salt bridge was constructed.
The cell itself works fine, but I have a question about the time this reaction will take to complete. The reaction should complete when all of the copper ions have reduced. There are 2 Faradays of charge transferred per mole, and 96500 Coulombs of charge in a Faraday. Since Amperes measure Coulombs per second, I need to know how many amps the cell draws when short circuiting to calculate how long the reaction should take to reach completion.
Now, the fundamental question facing me: How do I calculate the amperage a voltaic cell runs at when shorted out? I realize that I could just measure it with my handy-dandy multimeter, but I really would rather learn to calculate it, and thus gain a further understanding of electrochemistry. Any advice is much appreciated.
~SlidemanD~