(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

An oscillator with a mass of 520 g and a period of 0.500 s has an amplitude that decreases by 1.00% during each complete oscillation.

PART A : If the initial amplitude is 10.2cm , what will be the amplitude after 43.0 oscillations?

PART B: At what time will the energy be reduced to 64.0% of its initial value?

2. Relevant equations

Xmax(t) = Ae^(-bt/2m)

3. The attempt at a solution

I've spent the past hour reviewing the problem and reading the textbook but I cannot seem to get a grip on our to successfully complete either PART A or B. Starting with PART A, we have the unknown b and if you solve for b, you will have the unknown of xmax (amplitude after 43 oscillations). I'm frustrated with the problem and I'm hoping to get some help.

We know the amplitude, the time, and the mass. We don't know the damping constant (b)

Thanks,

UMDstudent

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Amplitude and Oscillations

**Physics Forums | Science Articles, Homework Help, Discussion**