Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

An infinitely old universe

  1. Oct 10, 2005 #1

    Chronos

    User Avatar
    Science Advisor
    Gold Member
    2015 Award

    Assuming the universe is infinitely old, what would, or would you not expect to see? I will start with 'black' galaxies composed of burnt out stars.
     
  2. jcsd
  3. Oct 30, 2005 #2

    Nereid

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    You couldn't, wouldn't, {more} see anything!

    Either gravity wins (and everything ends up in a humongous SMBH), or it doesn't (and you get an infinitely thin, 0K gas).

    IIRC, there was an interesting article in Sky&Telescope some years ago on a similar topic; the authors assumed BH evaporation and protons decay, and ended up with a universe comprised of positronium, with the mean distance between the (bound) electron and positron of several billion ly!
     
  4. Oct 30, 2005 #3

    Garth

    User Avatar
    Science Advisor
    Gold Member

    As we are talking about infinity then it really does depend on how we measure time.

    For example, the standard BB becomes infinitely old if we measure time on a logarithmic scale. Such a scale is physically presented by the frequency (inverse) of the CMB photons.....

    Garth
     
  5. Oct 30, 2005 #4

    turbo

    User Avatar
    Gold Member

    You will see exactly what we see now. We live in a universe that is infinite, both temporally and spacially.
     
  6. Oct 30, 2005 #5

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    There's nothing physically meaningful about that. I can define a different logarithmic scale, setting t=0 to be five minutes ago, and say that an infinite amount of logarithmic time has passed in the last five minutes. This is basically just a variant on Zeno's paradox. If we want to define an absolute age for the universe, it only makes sense to talk in linear units...logarithmic units are better for relative ages.
     
  7. Oct 30, 2005 #6

    Garth

    User Avatar
    Science Advisor
    Gold Member

    That depends on what physical process you are using to measure time with.

    If your clock 'ticking' is an vibrating atom then there have been a finite number of ticks since the BB - about 14 Gyrs of them.

    If your clock 'ticking' is the inverse frequency of a CMB photon then there have been an infinite number of ticks since the BB.

    Garth
     
  8. Oct 30, 2005 #7

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    The CMB, as we know it, only goes back to z ~ 1100, so this isn't really true. Prior to that, the photons in the universe were all "young", in the sense that they were recently emitted/scattered by a particle...so you can't use them as a clock, in the usual sense. You're not wrong that, if we defined time logarithmically from the moment of the big bang, there is an infinite age to the universe. What I'm saying is that this definition of time has no correspondence to what we normally understand to be the "age" of something. This understanding is intimately connected to your first example, the ticking of the atomic clock.
     
  9. Oct 30, 2005 #8

    Alkatran

    User Avatar
    Science Advisor
    Homework Helper

    What if it was a steady-state universe? (The sky would be filled with blinding light if I remember correctly..)
     
  10. Oct 31, 2005 #9

    -Job-

    User Avatar
    Science Advisor

    Supposing gravity wins and everything gets back together, are we assuming space gets compressed as well? Will gravity pull back space itself? What are the properties of this compressed space? Is it occupiable by matter?
    If space can become compressed under the effect of gravity then are we able to identify "compressed space" around massive objects?
    Or is it that even though matter turns around and gets back together, space does not recede but stays where it is.
     
  11. Oct 31, 2005 #10

    Garth

    User Avatar
    Science Advisor
    Gold Member

    Exactly the same criticism can be used against an atomic clock; how do you define the first nano-second, or whatever, when there were no atoms around to measure it? You have to extrapolate back from the epoch when they do exist.

    Garth
     
  12. Oct 31, 2005 #11

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    That wasn't my criticism of logarithmic time, that was my refutation of your statement:

    Presumably, you were trying to justify your choice of logarithmic scale with an actual physical process, but I was pointing out that your justification only worked back to z~1100. Aside from that, it's only one physical process and I don't see how it's justified to define time in that way.

    When I say that our understanding of time is "intimately connected" to the atomic clock, I don't mean that it's the atoms themselves that are important. Rather, I mean that the "clock" measures the same time that governs aging, brain functions, and other things we associate with the passage of time. A hypothetical clock based on the frequency of the CMB radiation would not be measuring time in this same sense and would therefore be referring to a different concept from what was intended in the thread.
     
  13. Oct 31, 2005 #12

    Garth

    User Avatar
    Science Advisor
    Gold Member

    ST - the question is: "How do we measure anything?"

    We have to adopt a convention - define a method of measurement in which a particular unit is constant when we conceptually transport it across space and time to make a comparison. In order to identify such a convention we need a conservation principle - something that does not change under translations of boost or position across the changing gravitational and therefore curvature fields of the universe.

    In GR that conservation principle is that of energy-momentum encapsulated in Einstein's Equivalence Principle. The unit that does not change is the 'rest' mass of an atom. Therefore we can use its size - a steel rule - to measure space and its 'vibrations' to measure time - an atomic clock.

    However Weyl’s hypothesis1 was that a true infinitesimal geometry should recognize only a principle for transferring the magnitude of a vector to an infinitesimally close point, and not throughout the space-time manifold as in GR. This led to the concept that the space-time manifold M is equipped with a class [gµν] of conformally equivalent Lorentz metrics gµν and not a unique metric as in GR.

    This hypothesis is the basis of conformal gravity theories.

    Conformal transformations preserve angles - and hence the WMAP data set is consistent with conformally flat geometries as well as just flat ones - but they do not preserve particle masses. Hence the opportunity exists to define other ways of measuring space and time.

    The question is: "Are these conformal 'frames of measurement' physically significant?

    I have simply pointed out that if one used the frequency (inverse) of a cosmological photon2 to be the unit of time measurement then the finite aged universe becomes infinite in this conformal frame, because the 'number of beats' of the photon asymptotically approaches infinity as it is infinitely blue shifted when the BB is approached under time reversal.

    Is this conformal frame physically significant and what is the conservation principle it depends on? Well not only is the measurement of photons a physical activity - it is the only activity at present we are engaged in when observing the distant universe! (Cosmic rays excepted) The conservation principle is that of the conservation of energy rather than energy-momentum. Yes you do need a special - even preferred - frame of reference to define that energy, it is the Machian CoM frame indentified to be the isotropic frame of the CMB.

    Garth

    Notes:
    1 Weyl, H.: 1918, ‘Gravitation und Electriticitat’ Sitzungsberichte der Preussichen Akad. d. Wissenschaften,
    English translation, 1923, in: The Principle of Relativity, Dover Publications.
    2A photon selected (at the peak intensity) from the CMB radiation bath, either before or after the universe became transparent at the Surface of Last Scattering.
     
    Last edited: Oct 31, 2005
  14. Oct 31, 2005 #13

    Chronos

    User Avatar
    Science Advisor
    Gold Member
    2015 Award

    I fundamentally object to any 'How do we measure anything?' proposition. That begs for an absolute reference frame, in my mind.
     
  15. Oct 31, 2005 #14

    Garth

    User Avatar
    Science Advisor
    Gold Member

    Chronos why on earth do you say that? Defining how observations are made is fundamental to experimental physics and even more important in astrophysics, where by their very nature such observations are (extremely) remote. It is not a position of 'agnosticism' - we can't know anything - but one of methodology and definition.

    We define a standard unit and then compare it with the object under observation. When that object is at the far side of the universe the comparison itself may be problematic!

    Garth
     
    Last edited: Oct 31, 2005
  16. Oct 31, 2005 #15

    Chronos

    User Avatar
    Science Advisor
    Gold Member
    2015 Award

    Are not 'measurements' a relational concept? How do you set the bar before there was a bar?
     
  17. Oct 31, 2005 #16

    Garth

    User Avatar
    Science Advisor
    Gold Member

    That is what I am saying.

    Henry VIII defined a 'foot' to be the length of his own foot - or so folklore has it - we do the same with the metre, kilogramme and second, however Planck units do provide what appears to be an 'absolute' set of measurements. They also link together the cosmological and quantum worlds.

    The universe is therefore ~ 1060 Planck units age, size and mass! (OOM of course) (Using atomic clocks, steel rulers and atomic masses to make the measurement)

    Garth

    NB - Age of the universe ~ 3. 1017 seconds : PT ~ 10-43 secs.
    Size of universe ~ 3. 1017 x 3. 1010 cms = 1028 cms. : PL ~ 10-33 cms.
    Mass of universe ~ 1022 x 2.1033 gms. ~ 1055 gms : PM ~ 10-5 gms.
     
    Last edited: Oct 31, 2005
  18. Oct 31, 2005 #17

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    That is indeed the question and, to my knowledge, there is absolutely no evidence that they are. Until such evidence arises, there's no reason to view this definition of "time" as anything more than a mathematical convenience.


    Let's explore this claim in a bit more detail.

    If the frequency of the CMB photons, [itex]\nu[/itex], were given, then we can calculate the number of times our "clock" would have "ticked" since the beginning. Our new definition of time could then be described in terms of the old one:

    [tex]t_{CMB}\equiv N_{tick} = \int_0^t\nu d\tau[/tex]

    where the proper time, [itex]\tau[/itex], just becomes a parameter for the cosmological model that is connected to the new definition of time by the frequency of a hypothetical CMB photon. If the frequency were constant, this new definition of time would be measuring the same thing as the old one (that is, it would just be proportional to it), but in standard cosmology, the frequency redshifts:

    [tex]\nu = \nu_0 (1+z) = \nu_0\frac{a_0}{a}[/tex]

    Here, a is the scale factor and the variables with "0" subscripts are just their current values. Plugging this into the earlier equation, we get:

    [tex]t_{CMB}\propto \int_0^t\frac{d\tau}{a}[/tex]

    This is, not surprisingly, just the definition of conformal time commonly used in cosmology. However, the conformal time is not generically divergent in standard cosmological models. For example, take the flat, matter-dominated universe:

    [tex]\int_0^t\frac{d\tau}{\tau^{2/3}}\propto t^{1/3}[/tex]

    In fact, the conformal age of the universe won't diverge unless the scale factor is decreasing linearly with time (or faster) as we approach the big bang in reverse. Since we don't know much of anything about the universe pre-inflation, the age of the universe in these coordinates would seem to be highly uncertain. I can't speak for any of the alternative gravity models, but this statement:

    would not be true in general.
     
    Last edited: Oct 31, 2005
  19. Oct 31, 2005 #18

    pervect

    User Avatar
    Staff Emeritus
    Science Advisor

    Diverging cosmological time is associated with the broad class of "coasting" models where a(t) [itex]\propto[/itex] t however, as the intergal becomes

    [tex]\int_0^t \frac{d\tau}{\tau} \propto ln(\tau)}
    [/tex]

    which diverges.

    These models are not currently standard, but they have an appealing simplicity and from what I've read, fit observational data very well with fewer "free" parameters than the current standard model with a cosmological constant. Unfortunately they do appear to require revising Einstein's field equations. Which is where Garth's SCC theory enters.
     
    Last edited: Oct 31, 2005
  20. Oct 31, 2005 #19

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Yes, a model like that would have the scale factor decreasing linearly as one approached the Big Bang. I was just making it clear that his statement about the "CMB" time frame was not generically true for the cosmological models being considered.
     
  21. Oct 31, 2005 #20

    My understanding is that the absolute 'Universal Clock' on the universe is the 'Hubble Time' which is derived from the 'Hubble Constant':

    [tex]T_u = \frac{1}{H_{\circ}}[/tex]

    Therefore, a Universe that that is 'infinitely old' would also be 'infinitely vast' and also 'infinitesimaly cold' (near absolute zero), a Cryoverse.

    The 'Hubble Constant' in an infinitely old Cryoverse would be nearly infinitesimal and therefore would not be observable.

    An infinitely old 'Cryoverse' would be a vast cold expanse that is not observable, not even to itself.
     
    Last edited: Nov 1, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: An infinitely old universe
  1. Universe Infinite (Replies: 37)

  2. Infinite universe (Replies: 87)

  3. Infinite Universe? (Replies: 16)

Loading...