An integer

  • MHB
  • Thread starter solakis1
  • Start date
  • #1
solakis1
425
0
Can the No :$4\sqrt{4-2\sqrt {3}}+\sqrt{97-56\sqrt 3}$ be an iteger ,if yes prove it if no then prove it again
 

Answers and Replies

  • #2
skeeter
1,104
1
integer ...

$4-2\sqrt{3} = 3 - 2\sqrt{3} +1 = (\sqrt{3} -1)^2$

$97-56\sqrt{3} = 49 - 2(28\sqrt{3}) + 48 = (7 - 4\sqrt{3})^2$

$4\sqrt{(\sqrt{3}-1)^2} + \sqrt{(7-4\sqrt{3})^2} = 4\sqrt{3}-4 + 7 -4\sqrt{3} = 3$
 
Last edited by a moderator:
  • #3
solakis1
425
0
very good ,excellent
 

Suggested for: An integer

  • Last Post
Replies
1
Views
529
Replies
31
Views
2K
  • Last Post
Replies
12
Views
792
  • Last Post
Replies
0
Views
455
  • Last Post
Replies
1
Views
479
  • Last Post
Replies
1
Views
388
  • Last Post
Replies
1
Views
841
  • Last Post
Replies
2
Views
472
Replies
4
Views
632
Top