- #1

- 1,395

- 0

in the first integral i substituted x^2 for t

in the second integral i substituted e^x

it didnt work

how to solve these integrals?

plz help

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter transgalactic
- Start date

- #1

- 1,395

- 0

in the first integral i substituted x^2 for t

in the second integral i substituted e^x

it didnt work

how to solve these integrals?

plz help

- #2

- 1,395

- 0

- #3

- 9

- 0

1/(x^4 +1 +1 -1 ) = 1/(x^4 - 1 )+2

1/[(x^2-1)(x^2+1)+2]

1/[(x-1)(x+1)((x^2 -1)+2) +2]

1/[(x-1)(x+1)((x-1)(x+1)+2)+2]

and you can use this web http://integrals.wolfram.com/index.jsp

- #4

- 9

- 0

1/(x^4 +1 +1 -1 ) = 1/(x^4 - 1 )+2

1/[(x^2-1)(x^2+1)+2]

1/[(x-1)(x+1)((x^2 -1)+2) +2]

1/[(x-1)(x+1)((x-1)(x+1)+2)+2]

and you can use this web http://integrals.wolfram.com/index.jsp

and

and respect to second probelm

int[1/(e^x - 1)]

put 1 = e^x/e^x

its become int[ e^x/(e^2x - e^x)]

put u = e^x subtitution

du = e^x dx

du = u dx

so dx = du/u

int [u du/(u^2 - u ) u]

and u =! 0 cuz u = e^x and exponantioal never will be zero

int[du/u(u-1)] its fraction partial

- #5

Gib Z

Homework Helper

- 3,346

- 6

For your second one, its a simple substitution.

[tex]u=\sqrt{e^x-1}[/tex]

[tex]dx=\frac{2\sqrt{e^x-1}}{e^x} du = \frac{2u}{u^2+1} du[/tex]

So [tex]\int \frac{1}{\sqrt{e^x-1}} dx[/tex] becomes

[tex]\int \frac{1}{u} \frac{2u}{u^2+1} du[/tex].

u's cancel out, take out the factor of 2.

[tex]2\int \frac{1}{1+u^2} du[/tex].

That integral is easy, arctan.

[tex]\int \frac{1}{\sqrt{e^x-1}} dx = 2\arctan (\sqrt{e^x-1})[/tex]

- #6

VietDao29

Homework Helper

- 1,424

- 3

How can you Partial Fraction

[tex]\frac{1}{(x - 1) (x + 1) ((x - 1)(x + 1) + 2) + 2}[/tex]?

For the first one, you can try the following:

[tex]\int \frac{dx}{x ^ 4 + 1} = \frac{1}{2} \int \frac{(x ^ 2 + 1) - (x ^ 2 - 1)}{x ^ 4 + 1} dx = \frac{1}{2} \left( \int \frac{x ^ 2 + 1}{x ^ 4 + 1} dx + \int \frac{x ^ 2 - 1}{x ^ 4 + 1} dx \right) = \frac{1}{2} (I_1 + I_2)[/tex]

[tex]I_1 = \int \frac{x ^ 2 + 1}{x ^ 4 + 1} dx = \int \frac{1 + \frac{1}{x ^ 2}}{x ^ 2 + \frac{1}{x ^ 2}} dx = \int \frac{1 + \frac{1}{x ^ 2}}{\left( x - \frac{1}{x} \right) ^ 2 + 2} dx[/tex]

Now, make the u-substitution: [tex]u = x - \frac{1}{x} \Rightarrow du = \left(1 + \frac{1}{x ^ 2} \right) dx[/tex], your integral will become:

[tex]I_1 = \int \frac{du}{u ^ 2 + (\sqrt{2}) ^ 2} = \frac{1}{\sqrt{2}} \arctan \left( \frac{u}{\sqrt{2}} \right) + C_1 = \frac{1}{\sqrt{2}} \arctan \left( \frac{x + \frac{1}{x}}{\sqrt{2}} \right) + C_1[/tex]

The second integral can be done by the u-substitution: [tex]u = x + \frac{1}{x}[/tex]

[tex]I_2 = \int \frac{x ^ 2 - 1}{x ^ 4 + 1} dx = \int \frac{1 - \frac{1}{x ^ 2}}{x ^ 2 + \frac{1}{x ^ 2}} dx = \int \frac{1 - \frac{1}{x ^ 2}}{\left( x + \frac{1}{x} \right) ^ 2 - 2} dx = ...[/tex]

Can you go from here? :)

Last edited:

- #7

- 1,395

- 0

thank alot!!!

Share: