- #1

- 101

- 0

## Homework Statement

(part of a problem)

Find the inverse fourier of F(w) = (3jw+9)/((jw)^2+6jw+8)

where w is the angular frequency, w=2pi * f = 2*pi/T

## Homework Equations

The fourier transfrom and its properties i guess.

Also the exponential FT common pair exp(-at)u(t) <-> 1/(jw+a)

where exp is the exponential function and u(t) the unit step function

## The Attempt at a Solution

I factored out the denominator in a hope that the 3jw+9 would cancel out with a possible root of jw=-3 , but the roots are -2 and -4.

I've been trying to seperate F into a product of easy transformable parts, to take advantage of the convolution property : x(t) [convolve] f(t) = X(w)F(w) , but i cant get rid of the nominator to apply the exponential fourier pair.

Any hints?