Need some hints on how to go about doing this:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]f(x, y)=\left\{\begin{array}{cc}\frac{x^4 + y^4}{x^2 + y^2},&\mbox{ if }

(x, y)\neq (0,0)\\0, & \mbox{ if } (x, y) = 0\end{array}\right.[/tex]

Show that f is differentiabile at [itex](0, 0)[/itex].

I've tried a number of things, too ugly and not worth writing down here (all got me nowhere). As far as I can tell, I want to show that some linear transformation [itex]\lambda \ :\ \mathbb{R}^2 \rightarrow \mathbb{R}[/itex] satisfies the equation:

[tex]\lim _{h \rightarrow 0} \frac{|f(0 + h) - f(0) - \lambda (h)|}{|h|} = 0[/tex]

[tex]\lim _{h \rightarrow 0} \frac{|f(h) - \lambda (h)|}{|h|} = 0[/tex]

[tex]\lim _{h \rightarrow 0} \left ( \frac{h_1^4 + h_2^4}{|h|^3} - \frac{\lambda (h)}{|h|} \right ) = 0[/tex]

Note that [itex]h = (h_1, h_2) \in \mathbb{R}^2[/itex]

Now, if we let [itex]\mu = -\lambda[/itex], then we have, and [itex]h_2 = 0[/itex], then we have:

[tex]\lim _{h \rightarrow 0} \left ||h_1| + \frac{\mu (h)}{|h_1|} \right |[/tex]

[tex]\leq \lim _{h \rightarrow 0} |h_1| + \left | \frac{\mu (h)}{|h_1|} \right |[/tex]

We know that there exists some real M > 0 such that [itex]|\mu (v)| \leq M|v|\ \forall \ v \in \mathbb{R}^2[/itex], so:

[tex]\leq \lim _{h \rightarrow 0} |h_1| + M = M[/tex]

So, if the function is differentiable at 0, then M = 0, so the linear transformation [itex]\mu[/itex] is the zero transformation, so the derivative at 0 is the zero transformation. Tell me if I've made a mistake so far, because, if not, I think I can prove that it's alsonotthe zero transformation. If I try to picture the graph, I think it should be zero. But I want to show that there exists some transformation such that :

[tex]\lim _{h \rightarrow 0} \frac{|f(0 + h) - f(0) - \lambda (h)|}{|h|} = 0[/tex]

holds, and when I try [itex]\lambda = 0[/itex], I just can't seem to evaluate the limit right (or rather, prove that it will evaluate to zero). However, I do seem to be able to show that it will be greater than zero, meaning that, if there is a derivative, the zero transformation is not it (contrary to what I just showed above with M = 0). So, clearly, I'm stuck. Any help would be appreciated.

EDIT: Actually, I think I can do the proof, here's what I have.

Assuming what I've done is right so far, and [itex]\lambda = \mu = 0[/itex] (the zero transformation), then I need to prove:

[tex]L = \lim _{h \rightarrow 0} \frac{|f(h)|}{|h|} = 0[/tex]

[tex]L = \lim _{h \rightarrow 0} \frac{|h_1^4 + h_2^4|}{(h_1^2 + h_2^2)^{3/2}}[/tex]

[tex]= \lim _{h \rightarrow 0} \frac{|(h_1^2 + h_2^2)^2 - 2h_1^2h_2^2|}{(h_1^2 + h_2^2)^{3/2}}[/tex]

[tex]= \lim _{h \rightarrow 0} \left ||h| - \frac{2h_1^2h_2^2}{(h_1^2 + h_2^2)^{3/2}} \right |[/tex]

[tex]= 2\lim _{h \rightarrow 0} \frac{h_1^2h_2^2}{(h_1^2 + h_2^2)^{3/2}}[/tex]

[tex]= 2\lim _{h \rightarrow 0} \left (|h|\frac{h_1^2h_2^2}{(h_1^2 + h_2^2)^2} \right )[/tex]

[tex]= 2\lim _{h \rightarrow 0} |h| \left (\frac{h_1h_2}{h_1^2 + h_2^2} \right )^2[/tex]

Now, consider the function [itex]g(z) = z + \frac{1}{z}[/itex] for positive [itex]z \in \mathbb{R}[/itex]. Simple analysis shows that g reaches a minimum at 2, so:

[tex]z + \frac{1}{z} \geq 2[/tex]

Now, let [itex]\frac{|h_1|}{|h_2|} = z[/itex]. Now, if either component of h is zero, we could have proven that the L = 0 long ago, so for the case where neither is zero, we can assign z as we have above. Now, we have:

[tex]\frac{|h_1|}{|h_2|} + \frac{|h_2|}{|h_1|} \geq 2[/tex]

[tex]h_1^2 + h_2^2 \geq 2|h_1||h_2|[/tex]

[tex]\frac{1}{2} \geq \frac{|h_1||h_2|}{h_1^2 + h_2^2}[/tex]

[tex]\frac{1}{4} \geq \left ( \frac{h_1h_2}{h_1^2 + h_2^2} \right )^2[/tex]

[tex]2|h|\frac{1}{4} \geq 2|h|\left ( \frac{h_1h_2}{h_1^2 + h_2^2} \right )^2[/tex]

So:

[tex]L \leq \frac{1}{2}\lim _{h \rightarrow 0} |h| = 0[/tex]

And so the proof is done. Did I do it right?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Analysis Problem (proving differentiability at a point)

**Physics Forums | Science Articles, Homework Help, Discussion**