(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I missed the last class and I guess our teacher solved this problem and said it would be on our next quiz and I do not really understand how to do it.

Prove that

(i) lim sup s_{n}is an element of SL(s_{n})

n to infinity

(ii) same thing but replace the sup with inf

2. Relevant equations

2. Relevant equations

lim sup:= limit supremum

lim inf:= limit infimum

3. The attempt at a solution

I know that it wants me to prove that the limit supremum of a s_{n}is an element of the set of all limits of all convergent subsequences of the sequence s_{n}. It makes sense that the sup and inf of the sequence would be would be elements of the set of all convergent subsequences because in order to have convergent subsequences the original sequence must be bounded. Thus, bounds would seem to be elements of the convergent, bounded subsequences.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Analysis subsequential limits

**Physics Forums | Science Articles, Homework Help, Discussion**