- #1

- 12

- 0

## Main Question or Discussion Point

I would like to find the attached integral analytically by using “Cauchy Residue Theorem”.

I am wondering if there is any numerical solution for this integral.

Thanks

[tex]\int {\frac {\exp(-M\omega) \exp(iN\omega)} {\omega^5(\frac{\omega^4}{f^4} + \frac{(\omega^2)(4\zeta^2-2)}{f^2}+ 1)}d\omega[/tex]

from 0 to [tex]\infty[/tex]

Where [tex]M[/tex], [tex]N[/tex], [tex]f[/tex] and [tex]\zeta[/tex] are known.

I am wondering if there is any numerical solution for this integral.

Thanks

[tex]\int {\frac {\exp(-M\omega) \exp(iN\omega)} {\omega^5(\frac{\omega^4}{f^4} + \frac{(\omega^2)(4\zeta^2-2)}{f^2}+ 1)}d\omega[/tex]

from 0 to [tex]\infty[/tex]

Where [tex]M[/tex], [tex]N[/tex], [tex]f[/tex] and [tex]\zeta[/tex] are known.