1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Analytical Mechanics of Space Systems by Hanspeter Schaub and John L. Junkins

  1. Strongly Recommend

    50.0%
  2. Lightly Recommend

    0 vote(s)
    0.0%
  3. Lightly don't Recommend

    50.0%
  4. Strongly don't Recommend

    0 vote(s)
    0.0%
  1. Feb 1, 2013 #1

    jhae2.718

    User Avatar
    Gold Member

    • Author: Hanspeter Schaub and John L. Junkins
    • Title: Analytical Mechanics of Space Systems
    • Amazon Link: http://amzn.com/1600867219
    • Prerequisities: Calculus, Ordinary Differential Equations, Basic Engineering Mechanics
    • Level: Senior Undergraduate or Graduate

    Also available from AIAA in hardback and electronic form.

    Analytical Mechanics of Space Systems is a comprehensive treatment of dynamics, celestial mechanics, and spacecraft control. The book contains material for up to three academic courses: a junior/senior level dynamics course covering kinematics and kinetics of particles and rigid bodies from the Newtonian and Eulerian perspectives, a graduate course on Lagrangian, Hamiltonian, and variational methods, and a graduate course on celestial mechanics.

    Table of Contents:

    Code (Text):

    Part 1. Basic Mechanics

    Chapter 1. Particle Kinematics
     1.1  Introduction
     1.2  Particle Position Description
     1.3  Vector Differentiation
          References
          Problems

    Chapter 2. Newtonian Mechanics
     2.1  Introduction
     2.2  Newton's Laws
     2.3  Single Particle Dynamics
     2.4  Dynamics of a System of Particles
     2.5  Dynamics of a Continuous System
     2.6  Rocket Problem
          References
          Problems

    Chapter 3. Rigid Body Kinematics
     3.1  Introduction
     3.2  Direction Cosine Matrix
     3.3  Euler Angles
     3.4  Principle Rotation Vector
     3.5  Euler Parameters
     3.6  Classical Rodrigues Parameters
     3.7  Modified Rodrigues Parameters
     3.8  Other Attitude Parameters
     3.9  Homogeneous Transformations
          References
          Problems

    Chapter 4. Eulerian Mechanics
     4.1  Introduction
     4.2  Rigid Body Dynamics
     4.3  Torque-Free Rigid Body Rotation
     4.4  Dual-Spin Spacecraft
     4.5  Momentum Exchange Devices
     4.6  Gravity Gradient Satellites
          References
          Problems

    Chapter 5. Generalized Methods of Analytical Dynamics
     5.1  Introduction
     5.2  Generalized Coordinates
     5.3  D'Alembert's Principle
     5.4  Lagrangian Dynamics
     5.5  Quasi Coordinates
     5.6  Cyclic Coordinates
     5.7  Final Observations
          References
          Problems

    Chapter 6. Variational Methods in Analytical Dynamics
     6.1  Introduction
     6.2  Fundamentals of Variational Calculus
     6.3  Hamilton's Variational Principles
     6.4  Hamilton's Principal Function
     6.5  Some Classical Applications of Hamilton's Principle to Distributed
          Parameter Systems
          References
          Problems

    Chapter 7. Hamilton's Generalized Formulations of Analytical Dynamics
     7.1  Introduction
     7.2  Hamiltonian Function
     7.3  Relationship of Hamiltonian Function to Work/Energy Integral
     7.4  Hamilton's Canonical Equations
     7.5  Poisson's Brackets
     7.6  Canonical Coordinate Transformations
     7.7  Perfect Differential Criterion for Canonical Transformations
     7.8  Transformation Jacobian Perspective on Canonical Transformations
          References
          Problems

    Chapter 8. Nonlinear Spacecraft Stability and Control
     8.1 Introduction
     8.2 Nonlinear Stability Analysis
     8.3 Generating Lyapunov Functions
     8.4 Nonlinear Feedback Control Laws
     8.5 Lyapunov Optimal Control Laws
     8.6 Linear Closed-Loop Dynamics
     8.7 Reaction Wheel Control Devices
     8.8 Variable Speed Control Moment Gyroscopes
         References
         Problems

    Part 2. Celestial Mechanics

    Chapter 9. Classical Two-Body Problem
     9.1  Introduction
     9.2  Geometry of Conic Sections
     9.3  Coordinate Systems
     9.4  Relative Two-Body Equations of Motion
     9.5  Fundamental Integrals
     9.6  Classical Solutions
          References
          Problems

    Chapter 10. Restricted Three-Body Problem
     10.1 Introduction
     10.2 Lagrange's Three-Body Solution
     10.3 Circular Restricted Three-Body Problem
     10.4 Periodic Stationary Orbits
     10.5 Disturbing Function
          References
          Problems

    Chapter 11. Gravitational Potential Field Methods
     11.1 Introduction
     11.2 Gravitational Potential of Finite Bodies
     11.3 MacCullagh's Approximation
     11.4 Spherical Harmonic Gravity Potential
     11.5 Multibody Gravitational Acceleration
     11.6 Multibody Gravitational Influence
          References
          Problems

    Chapter 12. Perturbation Methods
     12.1 Introduction
     12.2 Encke's Method
     12.3 Variation of Parameters
     12.4 State Transition and Sensitivity Matrix
          References
          Problems

    Chapter 13. Transfer Orbits
     13.1 Introduction
     13.2 Minimum Energy Orbit
     13.3 Hohmann Transfer Orbit
     13.4 Lambert's Problem
     13.5 Rotating the Orbit Plane
     13.6 Patched-Conic Orbit Section
          References
          Problems

    Chapter 14. Spacecraft Formation Flying
     14.1 Introduction
     14.2 General Relative Orbit Description
     14.3 Cartesian Coordinate Description
     14.4 Orbit Element Difference Description
     14.5 Relative Motion State Transition Matrix
     14.6 Linearized Relative Orbit Motion
     14.7 J_2 Invariant Relative Orbits
     14.8 Relative Orbit Control Methods
          References
          Problems

    Appendix A. Transport Theorem Derivation Using Linear Algebra
    Appendix B. Various Euler Angle Transformations
    Appendix C. MRP Identity Proof
    Appendix D. Conic Section Transformations
    Appendix E. Numerical Subroutine Library
    Appendix F. First-Order Mapping Between Mean and Osculating Orbit
                Elements
    Appendix G. Direct Linear Mapping Between Cartesian Hill Frame
                Coordinates and Orbit Element Differences
    Appendix H. Hamel Coefficients for the Rotational Motion of a Rigid Body

    Index
    Supporting Materials
     
     
    Last edited by a moderator: May 6, 2017
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Analytical Mechanics of Space Systems by Hanspeter Schaub and John L. Junkins
Loading...