Is Moment of Inertia Dependent on Surface Movement Away from Axis?

In summary: So I put that changing the angle to ##45## would leave the ##x## as the minimum.Apart from finding this principal angle, it was requested that the ##x'## axis (that is, the ##x##-axis of the principal axis) should be the minimum and the ##y##-axis the maximum. That is to say, about the principal axes, that there is one that must have a maximum moment of inertia and another one a minimum. So they told you that the principal ##x##-axis of inertia should be the minimum. So if you looked at the moment of inertia of each axis with the angle of ##-45^\circ##, then you got that the ##x## is the maximum and
  • #1
Guillem_dlc
184
15
Homework Statement
Find the angle of the principal axes where ##x'## and ##y'## are the principal axes.
Relevant Equations
Last figure of the solution
Statement figure:
1.png


My attempt at a solution:
FIGURE 1 ##\rightarrow A=a^2##
2.png

CG ##\rightarrow \overline{x}=-a/2, y=-a/2##
$$\overline{Ix}_1=\dfrac{bh^3}{12}=\overline{Iy}_1=\dfrac{a^4}{12}$$
$$Ix_1=\overline{Ix}_1+\overline{y}^2A=\dfrac{a^4}{12}+\dfrac{a^4}{4}=\dfrac13 a^4\, \textrm{mm}^4=Iy_1$$
$$\overline{Ixy}_1=0\, \textrm{mm}^4\rightarrow Ixy_1=\dfrac{a^4}{4}$$

FIGURE 2 ##\rightarrow A=\dfrac{\pi a^2}{2}##
3.png

CG ##\rightarrow \overline{x}=0, \overline{y}=\dfrac{4\pi}3a##
$$Ix_2=Iy_2=\dfrac{\pi}8a^4\, \textrm{mm}^4,\,\, \overline{Ixy}=0\rightarrow Ixy=0+0\cdot \overline{y}A=0\, \textrm{mm}^4$$
$$Ix=\sum Ix_i=0,76032a^4\, \textrm{mm}^4$$
$$Iy=\sum Iy_i=0,76032a^4 \, \textrm{mm}^4$$
$$Ixy=\sum Ixy_i=\dfrac 14a^2$$
$$\boxed{\sigma =\dfrac12 \arctan \left( \dfrac{-2Ixy}{Ix-Iy}\right)=\dfrac12 \arctan (-\infty)=-45^\circ}$$

4.png

If you could tell me if it's ok you would do me a big favor. thank you very much!

The moment of inertia depended on how the surface moves away from the axis, right? Because if so maybe it does make sense that I got the two equal moments (##x## and ##y##), doesn't it?
 
Physics news on Phys.org
  • #2
Your work for obtaining ##I_x## and ##I_y## looks correct. However, when I calculate ##\pi/8 + 1/3##, I get 0.726 instead of 0.760. But, the important thing for this problem is that ##I_x = I_y##. Many books use the notation ##I_{xx}## and ##I_{yy}## for your ##I_x## and ##I_y##. Also, many books define ##I_{xy}## to have the opposite sign of your definition. But, I've seen both definitions used.

The question asks for the angles of orientation of the principal ##x'## and ##y'## axes. You calculated one angle equal to -45o. So, I think you should include some comments regarding how this calculated angle relates to the orientation of the ##x'## and ##y'## axes.

Guillem_dlc said:
The moment of inertia depended on how the surface moves away from the axis, right? Because if so maybe it does make sense that I got the two equal moments (##x## and ##y##), doesn't it?

Yes, if you study how the mass is distributed about the ##x## and ##y## axes for this problem, then I think you can see that ##I_{xx}## should equal ##I_{yy}## without doing any calculation.
 
  • Like
Likes Lnewqban
  • #3
TSny said:
Your work for obtaining ##I_x## and ##I_y## looks correct. However, when I calculate ##\pi/8 + 1/3##, I get 0.726 instead of 0.760. But, the important thing for this problem is that ##I_x = I_y##. Many books use the notation ##I_{xx}## and ##I_{yy}## for your ##I_x## and ##I_y##. Also, many books define ##I_{xy}## to have the opposite sign of your definition. But, I've seen both definitions used.

The question asks for the angles of orientation of the principal ##x'## and ##y'## axes. You calculated one angle equal to -45o. So, I think you should include some comments regarding how this calculated angle relates to the orientation of the ##x'## and ##y'## axes.
Yes, if you study how the mass is distributed about the ##x## and ##y## axes for this problem, then I think you can see that ##I_{xx}## should equal ##I_{yy}## without doing any calculation.
##0,726## yes sorry I left out the ##2##.

That would be fine then, wouldn't it?
 
  • #4
Guillem_dlc said:
##0,726## yes sorry I left out the ##2##.

That would be fine then, wouldn't it?
Yes. Hopefully, the orientations of the principal axes are clear to you from your answer for the angle ##\sigma##.
 
  • #5
TSny said:
Yes. Hopefully, the orientations of the principal axes are clear to you from your answer for the angle ##\sigma##.
I was told that the ##x##-axis was going to be the minimum and with ##-45## I was left with the maximum.

So I put that changing the angle to ##45## would leave the ##x## as the minimum.
 
  • #6
Guillem_dlc said:
I was told that the ##x##-axis was going to be the minimum and with ##-45## I was left with the maximum.

So I put that changing the angle to ##45## would leave the ##x## as the minimum.
I don't understand what it means to say that the ##x##-axis is a minimum or a maximum. The important thing is to be able to draw or describe the orientation of the principal axes.
 
  • #7
TSny said:
I don't understand what it means to say that the ##x##-axis is a minimum or a maximum. The important thing is to be able to draw or describe the orientation of the principal axes.
Apart from finding this principal angle, it was requested that the ##x'## axis (that is, the ##x##-axis of the principal axis) should be the minimum and the ##y##-axis the maximum. That is to say, about the principal axes, that there is one that must have a maximum moment of inertia and another one a minimum. So they told you that the principal ##x##-axis of inertia should be the minimum. So if you looked at the moment of inertia of each axis with the angle of ##-45^\circ##, then you got that the ##x## is the maximum and the ##y## is the minimum. And then I thought about the angle of ##45^\circ##, which in the end is the same. And then the moment of inertia of ##x## was already the minimum, you know?
 
  • #8
OK. I see now. I agree that the principal moment of inertial about the axis at +45o would be smaller than the principal moment of inertia about the axis at -45o.
 
  • #9
TSny said:
OK. I see now. I agree that the principal moment of inertial about the axis at +45o would be smaller than the principal moment of inertia about the axis at -45o.
Okay, so it would be fine then, wouldn't it?
 
  • #10
I believe so.
 

What is the angle of the principal axes?

The angle of the principal axes is the angle at which the principal axes of a three-dimensional object intersect. It is usually measured in degrees or radians.

How is the angle of the principal axes calculated?

The angle of the principal axes can be calculated using mathematical formulas or through physical measurements. It depends on the shape and orientation of the object.

Why is the angle of the principal axes important?

The angle of the principal axes is important because it helps determine the stability and strength of an object. It also affects how the object will behave under different forces or loads.

How does the angle of the principal axes affect the moment of inertia?

The angle of the principal axes affects the moment of inertia of an object, which is a measure of its resistance to rotational motion. The moment of inertia is lower when the object's principal axes are aligned with the applied force, making it easier to rotate.

Can the angle of the principal axes be changed?

Yes, the angle of the principal axes can be changed by altering the shape or orientation of the object. It can also be changed by applying external forces or moments to the object.

Similar threads

  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
976
  • Introductory Physics Homework Help
Replies
2
Views
916
  • Introductory Physics Homework Help
Replies
29
Views
901
  • Introductory Physics Homework Help
Replies
5
Views
767
  • Introductory Physics Homework Help
Replies
5
Views
3K
  • Math Proof Training and Practice
2
Replies
60
Views
8K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
19K
  • Introductory Physics Homework Help
Replies
7
Views
18K
Back
Top