- #1
pixelized
- 7
- 0
On a frictionless table, a glob of clay of mass 0.740 kg strikes a bar of mass 1.740 kg perpendicularly at a point 0.140 m from the center of the bar and sticks to it. If the bar is 0.660 m long and the clay is moving at 9.600 m/s before the impact, what is the final speed of the center of mass?
I have solved this part. The next part is the one I'm stuck on.
At what angular speed does the bar/clay system rotate about its center of mass after the impact in radians/second?
I have tried conservation of energy 1/2m1v1 = 1/2m2v2 + 1/2 Iw^2 but my answer is wrong.
Final equation. w = (m1v1-m2v2)/(1/2ML^2)
Could someone tell me where I went wrong?
I have solved this part. The next part is the one I'm stuck on.
At what angular speed does the bar/clay system rotate about its center of mass after the impact in radians/second?
I have tried conservation of energy 1/2m1v1 = 1/2m2v2 + 1/2 Iw^2 but my answer is wrong.
Final equation. w = (m1v1-m2v2)/(1/2ML^2)
Could someone tell me where I went wrong?